Fast Computing in Networks with Limited Bandwidth

Ph.D Candidate: Dennis **Olivetti** Supervisor: Prof. Pierre **Fraigniaud**

INSTITUT
 DE RECHERCHE
 EN INFORMATIQUE
 FONDAMENTALE

Outline

- CONGEST Model
- Subgraph Detection
- Core-Periphery Networks
- Bandwidth Tradeoffs

э

Distributed Computing

- All nodes start the computation at the same round
- The computation proceeds in phases
- At each phase each node can send a different message to each neighbor

- All nodes start the computation at the same round
- The computation proceeds in phases
- At each phase each node can send a different message to each neighbor
- Fault-free

- All nodes start the computation at the same round
- The computation proceeds in phases
- At each phase each node can send a different message to each neighbor
- Fault-free
- Non-rational agents

- All nodes start the computation at the same round
- The computation proceeds in phases
- At each phase each node can send a different message to each neighbor
- Fault-free
- Non-rational agents
- Limited bandwidth

- All nodes start the computation at the same round
- The computation proceeds in phases
- At each phase each node can send a different message to each neighbor
- Fault-free
- Non-rational agents
- Limited bandwidth
- Complexity:
 - Number of rounds
 - Number of messages

- Time complexity: $\Theta(diameter)$
- Message complexity: $\Theta(edges \cdot diameter)$

< A 1

ヨトィヨト

Complexities

¹[Linial '92] ²[Cole, Vishkin '86] ³[Israeli, Itai '86] ⁴[Kutten, Peleg '98]
 ⁵[Becker, Karrenbauer, Krinninger, Lenzen '16]
 ⁶[Hua, Fan, Qian, Ai, Li, Shi, Jin '16] ⁷[Huang, Nanongkai, Saranurak '17]
 ⁸[Censor-Hillel, Khoury, Paz '17]

(4 回) (4 回) (4 回)

Example: Congestion

æ

ヘロト 人間 トイヨト 人間 とう

Example: Congestion

 C_4 -detection requires $\widetilde{\Theta}(\sqrt{n})$. [Drucker, Kuhn, Oshman, PODC'14]

4 6 1 1 4

Given a graph pattern H:

- if G does not contain H as subgraph, all nodes accept;
- otherwise, at least one node rejects.

Given a graph pattern H:

- if G does not contain H as subgraph, all nodes accept;
- otherwise, at least one node rejects.

Given a graph pattern H:

- if G does not contain H as subgraph, all nodes accept;
- otherwise, at least one node rejects.

Results:

• Triangle detection requires $O(n^{2/3})$ rounds [Izumi, Le Gall, PODC'17].

Results:

- Triangle detection requires $O(n^{2/3})$ rounds [Izumi, Le Gall, PODC'17].
- K_k detection ($k \ge 4$) requires $\widetilde{\Omega}(n)$ rounds. [Drucker, Kuhn, Oshman, PODC'14]

Results:

- Triangle detection requires $O(n^{2/3})$ rounds [Izumi, Le Gall, PODC'17].
- K_k detection ($k \ge 4$) requires $\widetilde{\Omega}(n)$ rounds. [Drucker, Kuhn, Oshman, PODC'14]
- C_k detection ($k \ge 4$) requires $\widetilde{\Omega}(ex(n, C_k)/n)$ rounds, where ex(n, H) is the maximal possible number of edges of an *n*-node graph *G* such that *G* does not contain *H* as subgraph. [Drucker, Kuhn, Oshman, PODC'14]

Results:

- Triangle detection requires $O(n^{2/3})$ rounds [Izumi, Le Gall, PODC'17].
- K_k detection ($k \ge 4$) requires $\widetilde{\Omega}(n)$ rounds. [Drucker, Kuhn, Oshman, PODC'14]
- C_k detection ($k \ge 4$) requires $\widetilde{\Omega}(ex(n, C_k)/n)$ rounds, where ex(n, H) is the maximal possible number of edges of an *n*-node graph *G* such that *G* does not contain *H* as subgraph. [Drucker, Kuhn, Oshman, PODC'14]
- For every k-node graph H, H-detection requires $\widetilde{O}(n^{1-2/k})$ rounds, if the communication graph is a clique. [Dolev, Lenzen, Peled, DISC'12]

・ 同 ト ・ ヨ ト ・ ヨ ト

Which patterns are detectable efficiently?

Theorem [Fraigniaud, Montealegre, O., Rapaport, Todinca, DISC'17]

For every tree T of constant size, there exists a deterministic algorithm performing in O(1) rounds in the CONGEST model for detecting whether the given input network contains T as a subgraph.

- 4 日 + 4 目 + 4 目 + 4 目 + - 9 2 の 2

- 4 日 + 4 目 + 4 目 + 4 目 + - 9 9 9 9

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● のへで

æ

・ロト ・四ト ・ヨト ・ヨト

æ

・ロト ・聞 ト ・ヨト ・ヨト

æ

・ロト ・四ト ・ヨト ・ヨト

æ

・ロト ・四ト ・ヨト ・ヨト

Lemma [Erdős, Hajnal, Moon '64]

Let *V* be a set of size *n*, and consider two integer parameters *p* and *q*. For any set $F \subseteq \mathcal{P}(V)$ of subsets of size at most *p* of *V*, there exists a *compact* (p, q)-*representation* of *F*, i.e., a subset \hat{F} of *F* satisfying:

- For each set C ⊆ V of size at most q, if there is a set L ∈ F such that L ∩ C = Ø, then there also exists L̂ ∈ F̂ such that L̂ ∩ C = Ø;
- 2 The cardinality of \hat{F} is at most $\binom{p+q}{p}$, for any $n \ge p+q$.

Breaking the lower bounds

Pattern detection:

- We want to detect more patterns, efficiently.
- There are polynomial lower bounds.
- We need to relax the problem.

Possible ways:

- Allow more bandwidth.
- Assume that the communication graph is a clique.
- Allow some error.

Distributed property testing

Let G = (V, E), n = |V|, m = |E|. Let ϵ be a small constant in (0, 1). A distributed tester for a graph property P is a distributed randomized algorithm A that satisfies the following conditions:

- G satisfies P ⇒ every node outputs "accept"
- G is ϵ -far from satisfying P \Rightarrow

 $\Pr[\text{at least one node outputs "reject"}] \geq \frac{2}{3}$

Distributed property testing

æ

・ロト ・四ト ・ヨト ・ヨト

How to measure how far is a graph from satisfying a property?

There exist two distinct models:

How to measure how far is a graph from satisfying a property?

There exist two distinct models:

Dense model

A graph is ϵ -far from satisfying a property if at least ϵn^2 edges should be added or removed from *G* in order to make the property hold.

How to measure how far is a graph from satisfying a property?

There exist two distinct models:

Dense model

A graph is ϵ -far from satisfying a property if at least ϵn^2 edges should be added or removed from *G* in order to make the property hold.

Sparse model

A graph is ϵ -far from satisfying a property if at least ϵm edges should be added or removed from G in order to make the property hold.

State of the art

[Censor-Hillel, Fischer, Schwartzman, Vasudev '16]

Any ϵ -tester for the dense model (for a non-disjointed property) that makes q queries can be converted to a distributed ϵ -tester that requires $O(q^2)$ rounds in the distributed setting.

伺下 イヨト イヨト

State of the art

[Censor-Hillel, Fischer, Schwartzman, Vasudev '16]

Any ϵ -tester for the dense model (for a non-disjointed property) that makes q queries can be converted to a distributed ϵ -tester that requires $O(q^2)$ rounds in the distributed setting.

[Censor-Hillel, Fischer, Schwartzman, Vasudev '16]

- Triangle freeness can be tested in $O(1/\epsilon^2)$
- Cycle freeness can be tested $O(\log n/\epsilon)$
- Cycle freeness requires at least $\Omega(\log n)$
- Bipartiteness can be tested in in $O(poly(\log \frac{n}{\epsilon}/\epsilon))$ in bounded degree graphs

State of the art

[Censor-Hillel, Fischer, Schwartzman, Vasudev '16]

Any ϵ -tester for the dense model (for a non-disjointed property) that makes q queries can be converted to a distributed ϵ -tester that requires $O(q^2)$ rounds in the distributed setting.

[Censor-Hillel, Fischer, Schwartzman, Vasudev '16]

- Triangle freeness can be tested in $O(1/\epsilon^2)$
- Cycle freeness can be tested $O(\log n/\epsilon)$
- Cycle freeness requires at least Ω(log n)
- Bipartiteness can be tested in in $O(poly(\log \frac{n}{\epsilon}/\epsilon))$ in bounded degree graphs

[Fraigniaud, Rapaport, Salo, Todinca '16]

• *H*-freeness can be tested in constant time for any *H* s.t. $|V(H)| \le 4$

Which patterns are detectable efficiently?

Theorem [Fraigniaud, O., SPAA'17]

There exists an ϵ -tester for C_k freeness, for any constant $k \ge 3$, that requires $O(\frac{1}{\epsilon})$ rounds in the CONGEST model.

*[Three Notes on Distributed Property Testing, Even, Fischer, Fraigniaud, Gonen, Levi, Medina, Montealegre, O., Oshman, Rapaport, Todinca]

Which patterns are detectable efficiently?

Theorem [Fraigniaud, O., SPAA'17]

There exists an ϵ -tester for C_k freeness, for any constant $k \ge 3$, that requires $O(\frac{1}{\epsilon})$ rounds in the CONGEST model.

Theorem [Fraigniaud, Montealegre, O., Rapaport, Todinca, DISC'17]*

There exists an ϵ -tester for H freeness, for any graph H of constant size composed by a tree, an edge, and arbitrary connections between the endpoints of the edge and the nodes of the tree, that requires $O(\frac{1}{\epsilon})$ rounds in the CONGEST model.

*[Three Notes on Distributed Property Testing, Even, Fischer, Fraigniaud, Gonen, Levi, Medina, Montealegre, O., Oshman, Rapaport, Todinca]

Tree + 1 edge

Open Problem

Congested clique

If we assume that the communication graph is a clique we can solve many problems very efficiently:

- C_4 detection in $O(1)^1$ rounds.
- MST in $O(1)^2$ rounds.
- Matrix multiplication, APSP approximation, triangle and 4-cycle counting, girth computing in $O(n^{0.158})^2$ rounds.

¹[Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela '15] ²[Jurdzinski, Nowicki '17] ³[Drucker, Kuhn, Oshman '17]

Congested clique

If we assume that the communication graph is a clique we can solve many problems very efficiently:

- C_4 detection in $O(1)^1$ rounds.
- MST in $O(1)^2$ rounds.
- Matrix multiplication, APSP approximation, triangle and 4-cycle counting, girth computing in $O(n^{0.158})^2$ rounds.

This model is very powerful:

- No lower bounds are known.
- It can simulate some powerful classes of circuits.³

The number of edges is quadratic in the number of nodes, it may be hard to build it in practice.

¹[Censor-Hillel, Kaski, Korhonen, Lenzen, Paz, Suomela '15] ²[Jurdzinski, Nowicki '17] ³[Drucker, Kuhn, Oshman '17]

一日、

Core-periphery networks

- A novel network architecture for parallel and distributed computing, inspired by social networks and complex systems, proposed by [Avin, Borokhovich, Lotker, Peleg '14].
- A core-periphery network *G* = (*V*, *E*) has its node set partitioned into a *core C* and a *periphery P*, and satisfies the following axioms:
 - Core boundary
 - Clique emulation
 - Periphery-core convergecast

Axiom 1: Core boundary

For every node $v \in C$, $\deg_C(v) \simeq \deg_P(v)$, where, for $S \subseteq V$ and $v \in V$, $\deg_S(v)$ denotes the number of neighbors of v in S.

Axiom 2: Clique emulation

The core can emulate the clique in a constant number of rounds in the CONGEST model. That is, there is a communication protocol running in a constant number of rounds in the CONGEST model such that, assuming that each node $v \in C$ has a message $M_{v,w}$ on $O(\log n)$ bits for every $w \in C$, then, after O(1) rounds, every $w \in C$ has received all messages $M_{v,w}$, for all $v \in C$.

Axiom 3: Periphery-core convergecast

There is a communication protocol running in a constant number of rounds in the CONGEST model such that, assuming that each node $v \in P$ has a message M_v on $O(\log n)$ bits, then, after O(1) rounds, for every $v \in P$, at least one node in the core has received M_v .

Not Core-Periphery Networks

æ

イロト イボト イヨト イヨト

Core-Periphery in Practice

Many file sharing networks:

- Centralized:
 - eDonkey
 - OpenNap
- Distributed:
 - Kademlia
 - WinMX
 - Gnutella
 - (Bearshare, Limewire, ...)
 - Bittorrent

A B M A B M

A 1

Core-Periphery in Practice

Many file sharing networks:

- Centralized:
 - eDonkey
 - OpenNap
- Distributed:
 - Kademlia
 - WinMX
 - Gnutella

(Bearshare, Limewire, ...)

Bittorrent

56k bandwidth

DSL bandwidth

A D A D A D A

Which graphs can satisfy Axiom 2 efficiently?

- Nodes should be able to perform an all-to-all communication efficiently
- We want the graph as sparse as possible

Tradeoff between edges and rounds

Theorem [Balliu, Fraigniaud, Lotker, O., SIROCCO'16]

Let $n \ge 1$, and $k \ge 3$. There is an *n*-node graph with $\frac{k-2}{(k-1)^2} n^2$ edges that can emulate the *n*-node clique in *k* rounds. Also, there is an *n*-node graph with $\frac{1}{3}n^2$ edges that can emulate the *n*-node clique in 2 rounds.

Theorem [Balliu, Fraigniaud, Lotker, O., SIROCCO'16]

Let $n \ge 1$, $k \in \{1, ..., n-1\}$, and let G be an n-node graph that can emulate the n-node clique in k rounds. Then G has at least $\frac{n(n-1)}{k+1}$ edges.

Proof idea

Dennis Olivetti

31/43

æ

イロト イロト イヨト イヨト

Theorem [Balliu, Fraigniaud, Lotker, O., SIROCCO'16]

Let $c \ge 0$, $n \ge 1$, $\alpha = \sqrt{(3+c)e/(e-2)}$ where e is the base of the natural logarithm, and $p \ge \alpha \sqrt{\ln n/n}$. For $G \in \mathcal{G}_{n,p}$, Pr[G can emulate K_n in $O(\min\{\frac{1}{p^2}, np\})$ rounds] $\ge 1 - O(\frac{1}{n^{1+c}})$

The power of Core-Periphery networks

- Matrix transposition in O(k) rounds, where k is the number of nonzero entries.
- Vector by matrix multiplication in O(k) rounds.
- Matrix multiplication in $O(k^2)$ rounds.
- Rank finding in *O*(1) rounds.
- Median finding in O(1) rounds.
- Mode finding in O(1) rounds.
- Number of distinct values O(1) rounds.
- MST in $O(\log^2 n)$ rounds.

Minimum Spanning Tree

MST in the Congest model:

- D = 1: $O(1)^1$ randomized, $O(\log \log n)^2$ deterministic
- D = 2: O(log n)³ deterministic
- $D \geq 3: \Omega(\sqrt[3]{n})^3$
- Core-Periphery ($D \approx 4$): $O(\log^2 n)^4$ randomized

¹[Jurdzinski, Nowicki '17] ²[Lotker, Patt-Shamir, Pavlov, Peleg '05] ³[Lotker, Patt-Shamir, Peleg '06] ⁴[Avin, Borokhovich, Lotker, Peleg '14]

Minimum Spanning Tree

Theorem [Balliu, Fraigniaud, Lotker, O., SIROCCO'16]

There exists a deterministic algorithm that solves the MST construction task in $O(\log n)$ rounds in Core-Periphery networks.

Open problem

In the Congested Clique we can construct a MST in O(1) rounds, can we construct a MST in Core-Periphery networks in $o(\log n)$?

The CONGEST_B model

Typically, messages are chosen to be $B = O(\log n)$ bits:

- MST can be constructed in $O(\sqrt{n}\log^* n + D)^1$ rounds
- SSSP can be approximated in $\widetilde{O}(\epsilon^{-O(1)}(\sqrt{n}+D))^2$
- APSP can be computed in $O(n / \log n)^3$

Typically, lower bounds depend on B:

- MST and SSSP require $\Omega(\sqrt{n/B})^4$
- APSP requires $\Omega(n/B)^{5,6}$

¹[Kutten, Peleg '98]
²[Becker, Karrenbauer, Krinninger, Lenzen '16]
³[Hua, Fan, Qian, Ai, Li, Shi, Jin '16]
⁴[Das Sarma, Holzer, Kor, Korman, Nanongkai, Pandurangan, Peleg, Wattenhofer '10]
⁵[Abboud, Censor-Hillel, Khoury '16]
⁶[Frischknecht, Holzer, Wattenhofer '12]

The CONGEST_B model

How the complexity of existing algorithms scale when more bandwidth is allowed?

Results

There exists an algorithm that solves the APSP problem in $\widetilde{O}(n/B+D)$ rounds.

There exists an algorithm that constructs a MST in $\widetilde{O}(D + \sqrt{\frac{n}{B}})$ rounds

There esists an algorithm that finds a $(1 + \epsilon)$ -approximation of the SSSP problem in $\widetilde{O}(\epsilon^{-O(1)}(\sqrt{\frac{n}{B}} + D))$ rounds.

A D A D A D A

Results

There is a problem such that:

- It can be solved in $O(\log n)$ rounds with $B = O(\log n)$.
- In order to solve it in less than $\frac{\log n}{2}$ rounds, messages must be of size at least $B = \widetilde{\Omega}(n)$.

< 回 > < 三 > <

Remarks

- In practice, one may prefer to use more bandwidth in order to decrease the latency.
- Different problems scale differently with the bandwidth.
- In some cases more bandwidth does not help.
- It makes sense to analyze algorithms for the whole spectrum of bandwidths.

Open problems

- Analyze more algorithms
- Find common patterns

크

∃ ► < ∃ ►</p>

< A 1

Thank you

æ

イロト イヨト イヨト イヨト