
New Classes of Distributed Time Complexity

Dennis Olive�i

Aalto University, Finland

New Classes of Distributed Time Complexity 1 / 33



Based on

New Classes of Distributed Time Complexity - Alkida Balliu, Juho

Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Dennis Olive�i, and

Jukka Suomela [STOC’18]

Almost Global Problems in the LOCAL Model - Alkida Balliu,

Sebastian Brandt, Dennis Olive�i, and Jukka Suomela [Submi�ed]

Slides based on “New Classes of Distributed Time Complexity”, Janne H. Korhonen

New Classes of Distributed Time Complexity 2 / 33



Outline

LOCAL Model

Locally Checkable Labellings

Results

Proof idea

New Classes of Distributed Time Complexity 3 / 33



LOCAL Model

Distributed

Unlimited bandwidth

Unlimited computational power

Nodes have IDs

In this talk:

I deterministic algorithms

New Classes of Distributed Time Complexity 4 / 33



LOCAL Model

Distributed

Unlimited bandwidth

Unlimited computational power

Nodes have IDs

In this talk:

I deterministic algorithms

New Classes of Distributed Time Complexity 4 / 33



LOCAL Model

Distributed

Unlimited bandwidth

Unlimited computational power

Nodes have IDs

In this talk:

I deterministic algorithms

New Classes of Distributed Time Complexity 4 / 33



LOCAL Model

Distributed

Unlimited bandwidth

Unlimited computational power

Nodes have IDs

In this talk:

I deterministic algorithms

New Classes of Distributed Time Complexity 4 / 33



Locally Checkable Labellings

LCL Problems:

Introduced by Naor and Stockmeyer in 1995

Constant-size input labels

Constant-size output labels

The maximum degree is constant

Validity of the output is locally checkable

New Classes of Distributed Time Complexity 5 / 33



LCL on Cycles

There are only three possible time complexities:

I Θ(1): trivial problems

I Θ(log∗n): local problems (symmetry breaking)

I Θ(n): global problems

Automatic speedups:

I Any o(log
∗ n)-rounds algorithm can be converted to a O(1)-rounds

algorithm [Naor and Stockmeyer, 1995]

I Any o(n)-rounds algorithm can be converted to a O(log
∗ n)-rounds

algorithm [Chang, Kopelowitz and Pe�ie, 2016]

On cycles with no input, given an LCL description, we can decide its

time complexity. [Naor and Stockmeyer, 1995] [Brandt et al, 2017]

New Classes of Distributed Time Complexity 6 / 33



LCL on Cycles

There are only three possible time complexities:

I Θ(1): trivial problems

I Θ(log∗n): local problems (symmetry breaking)

I Θ(n): global problems

Automatic speedups:

I Any o(log
∗ n)-rounds algorithm can be converted to a O(1)-rounds

algorithm [Naor and Stockmeyer, 1995]

I Any o(n)-rounds algorithm can be converted to a O(log
∗ n)-rounds

algorithm [Chang, Kopelowitz and Pe�ie, 2016]

On cycles with no input, given an LCL description, we can decide its

time complexity. [Naor and Stockmeyer, 1995] [Brandt et al, 2017]

New Classes of Distributed Time Complexity 6 / 33



LCL on Cycles

There are only three possible time complexities:

I Θ(1): trivial problems

I Θ(log∗n): local problems (symmetry breaking)

I Θ(n): global problems

Automatic speedups:

I Any o(log
∗ n)-rounds algorithm can be converted to a O(1)-rounds

algorithm [Naor and Stockmeyer, 1995]

I Any o(n)-rounds algorithm can be converted to a O(log
∗ n)-rounds

algorithm [Chang, Kopelowitz and Pe�ie, 2016]

On cycles with no input, given an LCL description, we can decide its

time complexity. [Naor and Stockmeyer, 1995] [Brandt et al, 2017]

New Classes of Distributed Time Complexity 6 / 33



LCL on Cycles

1 log∗n n

New Classes of Distributed Time Complexity 7 / 33



LCL on Trees

[Chang and Pe�ie, 2017]:

Any no(1)-rounds algorithm can be converted to a O(log n)-rounds

algorithm

There are problems of complexity Θ(n1/k)

New Classes of Distributed Time Complexity 8 / 33



LCL on Trees

1 log∗n nloglog∗n logn

? ? ? ?

n1/2n1/3no(1) . . . n1/4

??

New Classes of Distributed Time Complexity 9 / 33



LCL on Trees (Our Results)

1 log∗n nloglog∗n logn

? ? ?

n1/2n1/3no(1) . . . n1/4

??

New Classes of Distributed Time Complexity 10 / 33



LCL on General Graphs

There are problems with complexity Θ(log n) [Brandt et al, 2016]

[Chang, Kopelowitz and Pe�ie, 2016] [Gha�ari and Su, 2017]

Any o(log log
∗ n)-rounds algorithm can be converted to a O(1)-rounds

algorithm using the same techniques of [Naor and Stockmeyer, 1995]

Any o(log n)-rounds algorithm can be converted to a O(log
∗ n)-rounds

algorithm [Chang, Kopelowitz and Pe�ie, 2016]

Many problems require Ω(log n) and O(poly log n)

Di�erent scenario with randomized algorithms

New Classes of Distributed Time Complexity 11 / 33



LCL on General Graphs

There are problems with complexity Θ(log n) [Brandt et al, 2016]

[Chang, Kopelowitz and Pe�ie, 2016] [Gha�ari and Su, 2017]

Any o(log log
∗ n)-rounds algorithm can be converted to a O(1)-rounds

algorithm using the same techniques of [Naor and Stockmeyer, 1995]

Any o(log n)-rounds algorithm can be converted to a O(log
∗ n)-rounds

algorithm [Chang, Kopelowitz and Pe�ie, 2016]

Many problems require Ω(log n) and O(poly log n)

Di�erent scenario with randomized algorithms

New Classes of Distributed Time Complexity 11 / 33



LCL on General Graphs

There are problems with complexity Θ(log n) [Brandt et al, 2016]

[Chang, Kopelowitz and Pe�ie, 2016] [Gha�ari and Su, 2017]

Any o(log log
∗ n)-rounds algorithm can be converted to a O(1)-rounds

algorithm using the same techniques of [Naor and Stockmeyer, 1995]

Any o(log n)-rounds algorithm can be converted to a O(log
∗ n)-rounds

algorithm [Chang, Kopelowitz and Pe�ie, 2016]

Many problems require Ω(log n) and O(poly log n)

Di�erent scenario with randomized algorithms

New Classes of Distributed Time Complexity 11 / 33



LCL on General Graphs

There are problems with complexity Θ(log n) [Brandt et al, 2016]

[Chang, Kopelowitz and Pe�ie, 2016] [Gha�ari and Su, 2017]

Any o(log log
∗ n)-rounds algorithm can be converted to a O(1)-rounds

algorithm using the same techniques of [Naor and Stockmeyer, 1995]

Any o(log n)-rounds algorithm can be converted to a O(log
∗ n)-rounds

algorithm [Chang, Kopelowitz and Pe�ie, 2016]

Many problems require Ω(log n) and O(poly log n)

Di�erent scenario with randomized algorithms

New Classes of Distributed Time Complexity 11 / 33



LCL on General Graphs

There are problems with complexity Θ(log n) [Brandt et al, 2016]

[Chang, Kopelowitz and Pe�ie, 2016] [Gha�ari and Su, 2017]

Any o(log log
∗ n)-rounds algorithm can be converted to a O(1)-rounds

algorithm using the same techniques of [Naor and Stockmeyer, 1995]

Any o(log n)-rounds algorithm can be converted to a O(log
∗ n)-rounds

algorithm [Chang, Kopelowitz and Pe�ie, 2016]

Many problems require Ω(log n) and O(poly log n)

Di�erent scenario with randomized algorithms

New Classes of Distributed Time Complexity 11 / 33



LCL on General Graphs

1 log∗n nloglog∗n logn

? ? ? ?

n1/2n1/3no(1) . . . n1/4

???

New Classes of Distributed Time Complexity 12 / 33



LCL on General Graphs?

1 log∗n nloglog∗n logn n1/2n1/3no(1) . . . n1/4

New Classes of Distributed Time Complexity 13 / 33



LCL on General Graphs (Our Results)

1 log∗n nloglog∗n logn

?

n1/2n1/3no(1) . . . n1/4

New Classes of Distributed Time Complexity 14 / 33



LCL on General Graphs (Our Results)

1 log∗n nloglog∗n logn n1/2n1/3no(1) . . . n1/4

New Classes of Distributed Time Complexity 15 / 33



LCL on General Graphs (Our Results)

1 loglog∗n log∗n

2log
q/plog∗nlogp/qlog∗n (log∗n)q/p

2log
q/pnlogp/qn

log∗n logn nn1/2n1/3no(1) . . . n1/4

nq/p

New Classes of Distributed Time Complexity 16 / 33



General Idea

We start from an LCL problem Π on cycles:

I Πl has complexity T (n) = Θ(log
∗ n)

F 3 colouring

I Πg has complexity T (n) = Θ(n)
F a variant of 2 colouring

We build a speed-up construction:

I in ` rounds a node “sees” at distance f (`) = `g(`)
I we obtain an easier version of Π
I new complexity:

F Θ(f −1(T (n)))

New Classes of Distributed Time Complexity 17 / 33



Example

We start from a cycle

New Classes of Distributed Time Complexity 18 / 33



Example

We add shortcuts on top of the cycle, g(`) = 2
`

New Classes of Distributed Time Complexity 18 / 33



Example

We add shortcuts on top of the cycle, g(`) = 2
`

New Classes of Distributed Time Complexity 18 / 33



Example

We add shortcuts on top of the cycle, g(`) = 2
`

New Classes of Distributed Time Complexity 18 / 33



Example

We add shortcuts on top of the cycle, g(`) = 2
`

New Classes of Distributed Time Complexity 18 / 33



Example

We add shortcuts on top of the cycle, g(`) = 2
`

New Classes of Distributed Time Complexity 18 / 33



Example

We add shortcuts on top of the cycle, g(`) = 2
`

New Classes of Distributed Time Complexity 18 / 33



Example

Π can be solved in Θ(f −1(T (n))) rounds using the shortcuts

New Classes of Distributed Time Complexity 18 / 33



Example

Problem: this is not a valid LCL

New Classes of Distributed Time Complexity 18 / 33



Valid LCL

An LCL problem must be defined on any graph, not just on some

“relevant” instances

What if the shortcuts are missing?

What if a cycle is not present at all?

New Classes of Distributed Time Complexity 19 / 33



Fixing the details

Input:

I a graph

I a proof that the graph is a relevant instance

F it must be locally checkable

Output:

I Solve Π, or

I Prove that there is an error in the input proof, or in the graph structure

F it must be locally checkable

New Classes of Distributed Time Complexity 20 / 33



Local checkability of the input

New Classes of Distributed Time Complexity 21 / 33



Correct instance

New Classes of Distributed Time Complexity 22 / 33



Correct instance

New Classes of Distributed Time Complexity 22 / 33



Incorrect instance

New Classes of Distributed Time Complexity 23 / 33



Incorrect instance

New Classes of Distributed Time Complexity 23 / 33



Hardness balance

On incorrect instances, it should be easy to prove that there is an error

On correct instances, it should be impossible, or hard, to prove that

there is an error

New Classes of Distributed Time Complexity 24 / 33



Using di�erent g(`)

1 loglog∗n log∗n

2log
q/plog∗nlogp/qlog∗n (log∗n)q/p

2log
q/pnlogp/qn

log∗n logn nn1/2n1/3no(1) . . . n1/4

nq/p

New Classes of Distributed Time Complexity 25 / 33



Using di�erent g(`)

Which shortcut constructions can be locally checked?

New Classes of Distributed Time Complexity 26 / 33



Link Machine Programs

Constant number of registers

Reset

I r1 ← 1

Addition

I r1 ← r2 + r3
If statements with equality comparison

I if r1 = r2
I if r1 6= r2

g(`) = value of the maximum register a�er ` executions of the

program

New Classes of Distributed Time Complexity 27 / 33



Link Machine Programs: Examples

g(`) = 2
`

I r1 ← r1 + r1

g(`) = Θ(`2)
I r1 ← r1 + 1

I r2 ← r2 + r1

New Classes of Distributed Time Complexity 28 / 33



Link Machine Programs: Examples

g(`) = 2
`

I r1 ← r1 + r1
g(`) = Θ(`2)

I r1 ← r1 + 1

I r2 ← r2 + r1

New Classes of Distributed Time Complexity 28 / 33



Link Machine Programs: Building Blocks

Program P Input Output Growth

count – y = ` `
root

′
k – y = Θ(`1/k) Θ(`1/k)

rootk x y = Θ(x1/k) Θ(x)
powk x y = Θ(xk) Θ(xk)
exp x y = 2

Θ(x)
2

Θ(x)

log x y = Θ(log x) Θ(x)

New Classes of Distributed Time Complexity 29 / 33



Link Machine Programs: g(`)

Program P Growth

powp ◦ root′q Θ(`p/q)

exp ◦ powq ◦ root′p (p ≥ q) 2
Θ(`q/p)

exp ◦ powq ◦ rootp ◦ log ◦ count (p ≥ q) 2
Θ(log

q/p `)

New Classes of Distributed Time Complexity 30 / 33



Results

1 loglog∗n log∗n

2log
q/plog∗nlogp/qlog∗n (log∗n)q/p

2log
q/pnlogp/qn

log∗n logn nn1/2n1/3no(1) . . . n1/4

nq/p

New Classes of Distributed Time Complexity 31 / 33



Conclusions and Open Problems

Are there other gaps on trees?

What happens between Ω(log log
∗ n) and O(log

∗ n) on trees?

What about polynomial complexities with sub-diameter

time/sub-linear volume?

What are meaningful subclasses of LCL problems where there are gaps

again?

New Classes of Distributed Time Complexity 32 / 33



Thank you!

New Classes of Distributed Time Complexity 33 / 33


