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Outline

@ LOCAL Model

@ Locally Checkable Labellings
@ Results
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LOCAL Model

Distributed

Unlimited bandwidth
Unlimited computational power
Nodes have IDs

In this talk:
> deterministic algorithms
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Locally Checkable Labellings

LCL Problems:
@ Introduced by Naor and Stockmeyer in 1995
@ Constant-size input labels
@ Constant-size output labels
@ The maximum degree is constant

@ Validity of the output is locally checkable
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LCL on Cycles

@ There are only three possible time complexities:
> O(1): trivial problems
> O(log*n): local problems (symmetry breaking)
> O(n): global problems
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LCL on Cycles

@ There are only three possible time complexities:
» ©O(1): trivial problems
» O(log*n): local problems (symmetry breaking)
» O(n): global problems

@ Automatic speedups:

» Any o(log" n)-rounds algorithm can be converted to a O(1)-rounds
algorithm [Naor and Stockmeyer, 1995]

» Any o(n)-rounds algorithm can be converted to a O(log* n)-rounds
algorithm [Chang, Kopelowitz and Pettie, 2016]
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@ There are only three possible time complexities:
» ©O(1): trivial problems
» O(log*n): local problems (symmetry breaking)
» O(n): global problems

@ Automatic speedups:

» Any o(log" n)-rounds algorithm can be converted to a O(1)-rounds
algorithm [Naor and Stockmeyer, 1995]

» Any o(n)-rounds algorithm can be converted to a O(log* n)-rounds
algorithm [Chang, Kopelowitz and Pettie, 2016]

@ On cycles with no input, given an LCL description, we can decide its
time complexity. [Naor and Stockmeyer, 1995] [Brandt et al, 2017]
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LCL on Cycles
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LCL on Trees

[Chang and Pettie, 2017]:

o Any n°"-rounds algorithm can be converted to a O(log n)-rounds
algorithm

@ There are problems of complexity @(n'/¥)
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LCL on Trees

1 loglog™n log*n logn n® . g B iR
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LCL on Trees (Our Results)
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LCL on General Graphs

@ There are problems with complexity ®(log n) [Brandt et al, 2016]
[Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]

New Classes of Distributed Time Complexity 11/33



LCL on General Graphs

@ There are problems with complexity ®(log n) [Brandt et al, 2016]
[Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]

@ Any o(loglog® n)-rounds algorithm can be converted to a O(1)-rounds
algorithm using the same techniques of [Naor and Stockmeyer, 1995]

New Classes of Distributed Time Complexity 11/33



LCL on General Graphs

@ There are problems with complexity ®(log n) [Brandt et al, 2016]
[Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]

@ Any o(loglog® n)-rounds algorithm can be converted to a O(1)-rounds
algorithm using the same techniques of [Naor and Stockmeyer, 1995]

@ Any o(log n)-rounds algorithm can be converted to a O(log™ n)-rounds
algorithm [Chang, Kopelowitz and Pettie, 2016]

New Classes of Distributed Time Complexity 11/33



LCL on General Graphs

@ There are problems with complexity ®(log n) [Brandt et al, 2016]
[Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]

@ Any o(loglog® n)-rounds algorithm can be converted to a O(1)-rounds
algorithm using the same techniques of [Naor and Stockmeyer, 1995]

@ Any o(log n)-rounds algorithm can be converted to a O(log™ n)-rounds
algorithm [Chang, Kopelowitz and Pettie, 2016]

@ Many problems require Q)(log n) and O(poly log n)

New Classes of Distributed Time Complexity 11/33



LCL on General Graphs

@ There are problems with complexity ®(log n) [Brandt et al, 2016]
[Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]

@ Any o(loglog® n)-rounds algorithm can be converted to a O(1)-rounds
algorithm using the same techniques of [Naor and Stockmeyer, 1995]

@ Any o(log n)-rounds algorithm can be converted to a O(log™ n)-rounds
algorithm [Chang, Kopelowitz and Pettie, 2016]

@ Many problems require Q)(log n) and O(poly log n)

o Different scenario with randomized algorithms
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LCL on General Graphs
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LCL on General Graphs?
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LCL on General Graphs (Our Results)
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LCL on General Graphs (Our Results)

1 loglog™n log™n
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General Idea

@ We start from an LCL problem IT on cycles:
> I1; has complexity T(n) = ©(log™ n)
* 3 colouring
> Tlg has complexity T(n) = @(n)
* avariant of 2 colouring
@ We build a speed-up construction:

> in £ rounds a node “sees” at distance f(¢) = (g(/)
> we obtain an easier version of I1
> new complexity:

* O (T(n)))
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Example

@ We start from a cycle
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Example

@ We add shortcuts on top of the cycle, g(£) = 2°

ST
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Example

@ IT can be solved in @(f~'(T(n))) rounds using the shortcuts
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Example

@ Problem: this is not a valid LCL
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Valid LCL

@ An LCL problem must be defined on any graph, not just on some
“relevant” instances

@ What if the shortcuts are missing?

@ What if a cycle is not present at all?
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Fixing the details

@ Input:
> agraph
> a proof that the graph is a relevant instance
* it must be locally checkable
@ Output:

» Solve IT, or
> Prove that there is an error in the input proof, or in the graph structure

* it must be locally checkable
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Local checkability of the input
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Correct instance

v’v’v’v

7ﬂ7ﬂ7ﬂ'ﬂ7ﬂwﬂ7ﬂ7ﬂ
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Correct instance

v’v’v’v

7«7«7«7«7«7«7«7«1
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Incorrect instance

v’v’v’v

T s el ﬂ?ﬂ? <1.
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Incorrect instance
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Hardness balance

@ On incorrect instances, it should be easy to prove that there is an error

@ On correct instances, it should be impossible, or hard, to prove that
there is an error
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Using different g(¢)

1 loglog™n log™n
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Using different g(¢)

Which shortcut constructions can be locally checked?
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Link Machine Programs

@ Constant number of registers
@ Reset
> <1
@ Addition
> n+n
o If statements with equality comparison
> ifrp=n
> ifrp#n
@ g(¢) = value of the maximum register after £ executions of the
program
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Link Machine Programs: Examples

0 g(t)=2"

> 4 n-+n
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Link Machine Programs: Examples

0 g(t)=2"

> 4 n-+n

° g(f) =0(£)

> ri<—n+1

> < n+n
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Link Machine Programs: Building Blocks

Program P Input Output

Growth

COUNT - y =/

ROOT), - y =0
ROOT x y = 0O(x'/k)
POW X y = O(x¥)
EXP x y = 20()
LOG X y = O(log x)

@(f”k)
O(x)
O(x¥)
2®(X)
O(x)
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Link Machine Programs: g(¢)

Program P Growth
/
POW,, O ROOTY, ®(€P//q)
/ Q(L'p
EXP O POW, O ROOT,, (p>gq 20! /)
O(log?/? ¢
EXP O POW4 O ROOT, O LOG © COUNT  (p > g 20(log”? ()
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Results

1 loglog™n log™n
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Conclusions and Open Problems

@ Are there other gaps on trees?
@ What happens between Q)(log log* n) and O(log* n) on trees?

@ What about polynomial complexities with sub-diameter
time/sub-linear volume?

@ What are meaningful subclasses of LCL problems where there are gaps
again?

New Classes of Distributed Time Complexity 32/33



Thank youl!
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