New Classes of Distributed Time Complexity

Dennis Olivetti

Aalto University, Finland

Э

(日)

Based on

- New Classes of Distributed Time Complexity Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Dennis Olivetti, and Jukka Suomela [STOC'18]
- Almost Global Problems in the LOCAL Model Alkida Balliu, Sebastian Brandt, Dennis Olivetti, and Jukka Suomela [Submitted]

Slides based on "New Classes of Distributed Time Complexity", Janne H. Korhonen

Outline

- LOCAL Model
- Locally Checkable Labellings
- Results
- Proof idea

< • • • • **•**

Э

▶ < ∃ >

- Distributed
- Unlimited bandwidth
- Unlimited computational power
- Nodes have IDs
- In this talk:
 - deterministic algorithms

- Distributed
- Unlimited bandwidth
- Unlimited computational power
- Nodes have IDs
- In this talk:
 - deterministic algorithms

- Distributed
- Unlimited bandwidth
- Unlimited computational power
- Nodes have IDs
- In this talk:
 - deterministic algorithms

- Distributed
- Unlimited bandwidth
- Unlimited computational power
- Nodes have IDs
- In this talk:
 - deterministic algorithms

Locally Checkable Labellings

LCL Problems:

- Introduced by Naor and Stockmeyer in 1995
- Constant-size input labels
- Constant-size output labels
- The maximum degree is constant
- Validity of the output is locally checkable

- There are only three possible time complexities:
 - $\Theta(1)$: trivial problems
 - $\Theta(log^*n)$: local problems (symmetry breaking)
 - ► Θ(n): global problems

< ロ > < 同 > < 回 > < 回 > < 回 > <

- There are only three possible time complexities:
 - ▶ Θ(1): trivial problems
 - ► Θ(log*n): local problems (symmetry breaking)
 - ▶ Θ(n): global problems
- Automatic speedups:
 - ► Any o(log* n)-rounds algorithm can be converted to a O(1)-rounds algorithm [Naor and Stockmeyer, 1995]
 - ► Any o(n)-rounds algorithm can be converted to a O(log* n)-rounds algorithm [Chang, Kopelowitz and Pettie, 2016]

< ロ > < 同 > < 回 > < 回 > < 回 > <

- There are only three possible time complexities:
 - ▶ Θ(1): trivial problems
 - $\Theta(log^*n)$: local problems (symmetry breaking)
 - ▶ Θ(n): global problems
- Automatic speedups:
 - ► Any o(log* n)-rounds algorithm can be converted to a O(1)-rounds algorithm [Naor and Stockmeyer, 1995]
 - ► Any o(n)-rounds algorithm can be converted to a O(log* n)-rounds algorithm [Chang, Kopelowitz and Pettie, 2016]
- On cycles with no input, given an LCL description, we can *decide* its time complexity. [Naor and Stockmeyer, 1995] [Brandt et al, 2017]

æ

▲ロト ▲圖ト ▲国ト ▲国ト

LCL on Trees

[Chang and Pettie, 2017]:

- Any $n^{o(1)}$ -rounds algorithm can be converted to a $O(\log n)$ -rounds algorithm
- There are problems of complexity $\Theta(n^{1/k})$

ヘロト 人間 とくほ とくほ とう

LCL on Trees

3

ヘロト 人間 とくほ とくほとう

LCL on Trees (Our Results)

A B + A B +

• There are problems with complexity $\Theta(\log n)$ [Brandt et al, 2016] [Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]

- There are problems with complexity $\Theta(\log n)$ [Brandt et al, 2016] [Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]
- Any $o(\log \log^* n)$ -rounds algorithm can be converted to a O(1)-rounds algorithm using the same techniques of [Naor and Stockmeyer, 1995]

- There are problems with complexity $\Theta(\log n)$ [Brandt et al, 2016] [Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]
- Any o(log log* n)-rounds algorithm can be converted to a O(1)-rounds algorithm using the same techniques of [Naor and Stockmeyer, 1995]
- Any o(log n)-rounds algorithm can be converted to a O(log* n)-rounds algorithm [Chang, Kopelowitz and Pettie, 2016]

- There are problems with complexity $\Theta(\log n)$ [Brandt et al, 2016] [Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]
- Any o(log log* n)-rounds algorithm can be converted to a O(1)-rounds algorithm using the same techniques of [Naor and Stockmeyer, 1995]
- Any o(log n)-rounds algorithm can be converted to a O(log* n)-rounds algorithm [Chang, Kopelowitz and Pettie, 2016]
- Many problems require $\Omega(\log n)$ and $O(\operatorname{poly} \log n)$

- There are problems with complexity $\Theta(\log n)$ [Brandt et al, 2016] [Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]
- Any o(log log* n)-rounds algorithm can be converted to a O(1)-rounds algorithm using the same techniques of [Naor and Stockmeyer, 1995]
- Any o(log n)-rounds algorithm can be converted to a O(log* n)-rounds algorithm [Chang, Kopelowitz and Pettie, 2016]
- Many problems require $\Omega(\log n)$ and $O(\operatorname{poly} \log n)$
- Different scenario with randomized algorithms

э

▶ ★ 臣 ▶ ★ 臣 ▶

э

▶ ★ 臣 ▶ ★ 臣 ▶

LCL on General Graphs (Our Results)

• • = • • = •

< 台通

LCL on General Graphs (Our Results)

э

< 一型

▶ ★ 臣 ▶ ★ 臣 ▶

LCL on General Graphs (Our Results)

・ 戸 ト ・ ヨ ト ・ ヨ ト

General Idea

• We start from an LCL problem Π on cycles:

- Π_l has complexity $T(n) = \Theta(\log^* n)$
 - ★ 3 colouring
- Π_g has complexity $T(n) = \Theta(n)$
 - ★ a variant of 2 colouring
- We build a speed-up construction:
 - in ℓ rounds a node "sees" at distance $f(\ell) = \ell g(\ell)$
 - we obtain an easier version of Π
 - new complexity:

* $\Theta(f^{-1}(T(n)))$

• We start from a cycle

э

▲ロト ▲圖 と ▲ 国 と ▲ 国 と …

• We add shortcuts on top of the cycle, $g(\ell) = 2^{\ell}$

< 一型

• We add shortcuts on top of the cycle, $g(\ell) = 2^{\ell}$

< 一型

• We add shortcuts on top of the cycle, $g(\ell) = 2^{\ell}$

< 一型

▶ ◀ ె ▶

∃ >

• We add shortcuts on top of the cycle, $g(\ell) = 2^{\ell}$

▲ 伊 ▶ ▲ 国 ▶

• We add shortcuts on top of the cycle, $g(\ell) = 2^{\ell}$

▲ 伊 ▶ ▲ 国 ▶

• We add shortcuts on top of the cycle, $g(\ell) = 2^{\ell}$

< // ▶ < ∃ ▶

< ∃ >

• Π can be solved in $\Theta(f^{-1}(T(n)))$ rounds using the shortcuts

・ 同 ト ・ ヨ ト ・ ヨ ト

• Problem: this is not a valid LCL

< • • • • **•**

∃ ►

э

∃►

Valid LCL

- An LCL problem must be defined on any graph, not just on some "relevant" instances
- What if the shortcuts are missing?
- What if a cycle is not present at all?

Fixing the details

Input:

- a graph
- a proof that the graph is a relevant instance
 - ★ it must be locally checkable
- Output:
 - ► Solve Π, or
 - Prove that there is an error in the input proof, or in the graph structure
 - ★ it must be locally checkable

< ロ > < 同 > < 回 > < 回 > < 回 > <

Local checkability of the input

Correct instance

Э

Correct instance

Э

Incorrect instance

Э

Incorrect instance

Э

Hardness balance

- On incorrect instances, it should be easy to prove that there is an error
- On correct instances, it should be impossible, or hard, to prove that there is an error

Using different $g(\ell)$

・ 戸 ト ・ ヨ ト ・ ヨ ト

Using different $g(\ell)$

Which shortcut constructions can be locally checked?

< 1 →

Link Machine Programs

- Constant number of registers
- Reset
 - ► $r_1 \leftarrow 1$
- Addition
 - $\blacktriangleright r_1 \leftarrow r_2 + r_3$
- If statements with equality comparison
 - if $r_1 = r_2$
 - if $r_1 \neq r_2$
- $g(\ell) =$ value of the maximum register after ℓ executions of the program

イロト 不得 とくほ とくほ とうほ

Link Machine Programs: Examples

•
$$g(\ell) = 2^{\ell}$$

• $r_1 \leftarrow r_1 + r_1$

(日)

Link Machine Programs: Examples

•
$$g(\ell) = 2^{\ell}$$

• $r_1 \leftarrow r_1 + r_1$
• $g(\ell) = \Theta(\ell^2)$
• $r_1 \leftarrow r_1 + 1$
• $r_2 \leftarrow r_2 + r_1$

э

イロト イポト イヨト イヨト

Link Machine Programs: Building Blocks

Program P	Input	Output	Growth
COUNT	_	$y = \ell$	l
ROOT_k'	-	$y = \Theta(\ell^{1/k})$	$\Theta(\ell^{1/k})$
ROOT _k	X	$y = \Theta(x^{1/k})$	$\Theta(x)$
POWk	x	$y = \Theta(x^k)$	$\Theta(x^k)$
EXP	x	$y = 2^{\Theta(x)}$	$2^{\Theta(x)}$
LOG	X	$y = \Theta(\log x)$	$\Theta(x)$

イロト イポト イヨト イヨト

Link Machine Programs: $g(\ell)$

Program P		Growth
$POW_p \circ ROOT'_q$		$\Theta(\ell^{p/q})$
$exp \circ pow_q \circ root'_p$	$(p \ge q)$	$2^{\Theta(\ell^{q/p})}$
$exp \circ pow_q \circ root_p \circ log \circ count$	$(p \ge q)$	$2^{\Theta(\log^{q/p} \ell)}$

Э

(日)

Results

э

(日)

Conclusions and Open Problems

- Are there other gaps on trees?
- What happens between $\Omega(\log \log^* n)$ and $O(\log^* n)$ on trees?
- What about polynomial complexities with sub-diameter time/sub-linear volume?
- What are meaningful subclasses of LCL problems where there are gaps again?

Thank you!

Э