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LOCAL Model

Distributed

Unlimited bandwidth

Unlimited computational power

Nodes have IDs

In this talk:

I deterministic algorithms
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Locally Checkable Labellings

LCL Problems:

Introduced by Naor and Stockmeyer in 1995

Constant-size input labels

Constant-size output labels

The maximum degree is constant

Validity of the output is locally checkable
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LCL on Cycles

There are only three possible time complexities:

I Θ(1): trivial problems

I Θ(log∗n): local problems (symmetry breaking)

I Θ(n): global problems

Automatic speedups:

I Any o(log
∗ n)-rounds algorithm can be converted to a O(1)-rounds

algorithm [Naor and Stockmeyer, 1995]

I Any o(n)-rounds algorithm can be converted to a O(log
∗ n)-rounds

algorithm [Chang, Kopelowitz and Pe�ie, 2016]

On cycles with no input, given an LCL description, we can decide its

time complexity. [Naor and Stockmeyer, 1995] [Brandt et al, 2017]
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LCL on Cycles

1 log∗n n
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LCL on Trees

[Chang and Pe�ie, 2017]:

Any no(1)-rounds algorithm can be converted to a O(log n)-rounds

algorithm

There are problems of complexity Θ(n1/k)
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LCL on Trees

1 log∗n nloglog∗n logn

? ? ? ?

n1/2n1/3no(1) . . . n1/4

??
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LCL on Trees (Our Results)

1 log∗n nloglog∗n logn

? ? ?

n1/2n1/3no(1) . . . n1/4

??
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LCL on General Graphs

There are problems with complexity Θ(log n) [Brandt et al, 2016]

[Chang, Kopelowitz and Pe�ie, 2016] [Gha�ari and Su, 2017]

Any o(log log
∗ n)-rounds algorithm can be converted to a O(1)-rounds

algorithm using the same techniques of [Naor and Stockmeyer, 1995]

Any o(log n)-rounds algorithm can be converted to a O(log
∗ n)-rounds

algorithm [Chang, Kopelowitz and Pe�ie, 2016]

Many problems require Ω(log n) and O(poly log n)

Di�erent scenario with randomized algorithms
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LCL on General Graphs

1 log∗n nloglog∗n logn

? ? ? ?

n1/2n1/3no(1) . . . n1/4
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LCL on General Graphs?

1 log∗n nloglog∗n logn n1/2n1/3no(1) . . . n1/4
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LCL on General Graphs (Our Results)

1 log∗n nloglog∗n logn
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LCL on General Graphs (Our Results)

1 loglog∗n log∗n

2log
q/plog∗nlogp/qlog∗n (log∗n)q/p

2log
q/pnlogp/qn

log∗n logn nn1/2n1/3no(1) . . . n1/4

nq/p
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General Idea

We start from an LCL problem Π on cycles:

I Πl has complexity T (n) = Θ(log
∗ n)

F 3 colouring

I Πg has complexity T (n) = Θ(n)
F a variant of 2 colouring

We build a speed-up construction:

I in ` rounds a node “sees” at distance f (`) = `g(`)
I we obtain an easier version of Π
I new complexity:

F Θ(f −1(T (n)))
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Example

We start from a cycle
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Example

Π can be solved in Θ(f −1(T (n))) rounds using the shortcuts
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Example

Problem: this is not a valid LCL
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Valid LCL

An LCL problem must be defined on any graph, not just on some

“relevant” instances

What if the shortcuts are missing?

What if a cycle is not present at all?
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Fixing the details

Input:

I a graph

I a proof that the graph is a relevant instance

F it must be locally checkable

Output:

I Solve Π, or

I Prove that there is an error in the input proof, or in the graph structure

F it must be locally checkable
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Local checkability of the input
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Correct instance
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Correct instance
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Incorrect instance
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Incorrect instance
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Hardness balance

On incorrect instances, it should be easy to prove that there is an error

On correct instances, it should be impossible, or hard, to prove that

there is an error
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Using di�erent g(`)

1 loglog∗n log∗n

2log
q/plog∗nlogp/qlog∗n (log∗n)q/p

2log
q/pnlogp/qn

log∗n logn nn1/2n1/3no(1) . . . n1/4

nq/p
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Using di�erent g(`)

Which shortcut constructions can be locally checked?
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Link Machine Programs

Constant number of registers

Reset

I r1 ← 1

Addition

I r1 ← r2 + r3
If statements with equality comparison

I if r1 = r2
I if r1 6= r2

g(`) = value of the maximum register a�er ` executions of the

program
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Link Machine Programs: Examples

g(`) = 2
`

I r1 ← r1 + r1

g(`) = Θ(`2)
I r1 ← r1 + 1

I r2 ← r2 + r1
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Link Machine Programs: Building Blocks

Program P Input Output Growth

count – y = ` `
root

′
k – y = Θ(`1/k) Θ(`1/k)

rootk x y = Θ(x1/k) Θ(x)
powk x y = Θ(xk) Θ(xk)
exp x y = 2

Θ(x)
2

Θ(x)

log x y = Θ(log x) Θ(x)
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Link Machine Programs: g(`)

Program P Growth

powp ◦ root′q Θ(`p/q)

exp ◦ powq ◦ root′p (p ≥ q) 2
Θ(`q/p)

exp ◦ powq ◦ rootp ◦ log ◦ count (p ≥ q) 2
Θ(log

q/p `)
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Results

1 loglog∗n log∗n

2log
q/plog∗nlogp/qlog∗n (log∗n)q/p

2log
q/pnlogp/qn
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Conclusions and Open Problems

Are there other gaps on trees?

What happens between Ω(log log
∗ n) and O(log

∗ n) on trees?

What about polynomial complexities with sub-diameter

time/sub-linear volume?

What are meaningful subclasses of LCL problems where there are gaps

again?
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Thank you!
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