

Joint work with

- Alkida Balliu · Aalto University
- Juho Hirvonen · Aalto University
- Christoph Lenzen · Max Planck Institute for Informatics
- Jukka Suomela · Aalto University

Hardness of minimal symmetry breaking in distributed computing arXiv:1811.01643

Locality of not-so-weak coloring arXiv:1904.05627

General Topic

- Entities = nodes
- Communication links = edges
- Input graph = communication graph

- Each node has a unique identifier from 1 to poly(n)
- No bounds on the computational power of the entities
- No bounds on the bandwidth

Round 0

Round 1

Round 2

- After t rounds: knowledge of the graph up to distance t
- Focus on locality

Distributed Complexity of Weak 2-Coloring

- Θ(log* Δ) in odd-degree graphs [Naor and Stockmeyer 1995] [Brandt 2019]
- O(log* n) on general graphs
- $\Omega(\log^* n)$ on cycles [Reduction from 3-coloring]
- $\Omega(\log \log^* n)$ on regular trees [Naor and Stockmeyer 1995] [Chang and Pettie 2017]

The Ω(log log* n) lower bound

- Naor & Stockmeyer proved that any constant time algorithm for LCLs can be transformed to an order invariant algorithm
- On even regular trees, weak 2-coloring can not be solved by an order invariant algorithm
- Chang and Pettie lifted the gap up to $\Omega(\log \log^* n)$
- Both proofs use Ramsey theory
- Ramsey gives a lower bound on volume, not distance

Lower bound on cycles

Lower bound on cycles

 $\Omega(\log^* n)$

Lower bound on cycles

Lower bound on trees

Lower bound on trees

Lower bound on trees

Complexity in even degree regular graphs

• Lower bound of $\Omega(\log \log^* n)$ distance and $\Omega(\log^* n)$ volume

Upper bound of O(log* n) distance

Is a volume of O(log* n) nodes enough?

• Or do we need to see at distance $\Omega(\log^* n)$?

Is it easier to solve weak 2-coloring if we have many neighbors?

Our results

Weak 2-coloring requires $\Omega(\log^* n)$ time in even-regular trees:

- For any constant even Δ
- Even if we allow randomization
- Even if identifiers are exactly in {1, ..., n}

Also, weak 2-coloring is the easiest possible non constant time "homogeneous LCL" problem

Speedup Simulation Technique

- Given:
 - an algorithm A_0 that solves problem P_0 in T rounds,
- We construct:
 - an algorithm A_1 that solves problem P_1 in T-1 rounds,
 - an algorithm A_2 that solves problem P_2 in T-2 rounds,
 - an algorithm A_3 that solves problem P_3 in T-3 rounds,
 - •
 - an algorithm A_T that solves problem P_T in O rounds.
- We prove that P_T can not be solved in 0 rounds.

Speedup for Weak 2-Coloring

- Given an algorithm $\bf A$ that solves weak $\bf c$ coloring in $\bf T$ rounds, we construct an algorithm $\bf A'$ that solves "special" weak $\bf 2^{2c}$ edge coloring in $\bf T-1$ rounds
- Given an algorithm $\bf A$ that solves "special" weak $\bf c$ edge coloring in $\bf T$ rounds, we construct an algorithm $\bf A'$ that solves weak $\bf 2^{4c}$ coloring in $\bf T$ rounds

Beyond Weak 2-Coloring

Weak 2-coloring

2-color the nodes such that each node has at least 1 neighbor of different color

2-Partial 2-Coloring

 2-color the nodes such that each node has at least 2 neighbors of different color

Our results

- 2-partial 2-coloring requires:
 - $\Omega(\log n)$ for any constant $\Delta \ge 2$
- k-partial 3-coloring requires:
 - $\Omega(\log n)$ for $\Delta = k$
 - $O(\log * n)$ for $\Delta \gg k$

Conclusions

- Weak 2-Coloring requires $\Theta(\log^* n)$ time on \triangle regular trees
- Requiring 2 neighbors of different color, instead of just 1, makes the problem much harder, $\Omega(\log n)$, even if $\Delta = 1000$
- Open problem:
 - 3-partial 3-coloring on 3-regular graphs is $\Omega(\log n)$ (it is Δ -coloring)
 - 3-partial 3-coloring on 5-regular graphs is O(log* n)
 - What is the complexity of 3-partial 3-coloring on 4-regular graphs?

Thank you!