http://www.superiorwallpapers.com

Three Notes on Distributed Property Testing

Guy Even^{1,*}, Orr Fischer², Pierre Fraigniaud³, **Tzlil Gonen²**, Reut Levi^{4,*}, **Moti Medina^{5,*}**, Pedro Montealegre⁶, **Dennis Olivetti⁷**,

Rotem Oshman², Ivan Rapaport⁸, & Ioan Todinca⁹

- 1. Tel-Aviv University, EE, Israel
- 2. Tel Aviv University, CS, Israel
- 3. CNRS and University Paris Diderot, France
- 4. Weizmann Institute of Science, CS and Applied Math, Israel
- 5. Ben-Gurion University of the Negev, ECE, Israel

- 6. Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Chile
- 7. Gran Sasso Science Institute, L'Aquila, Italy
- 8. DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Chile
- 9. Université d'Orléans, INSA Centre Val de Loire, LIFO EA 4022, France
- *. Work done in Max Planck Institute for Informatics, Saarland Informatics Campus, Germany

The Distributed **CONGEST** Model [Peleg 2000]

- A synched network G = (V, E)
- *V* are the processors
 - Each processor has a distinct ID.
- *E* are the communication links.
- Each processor is given a local input.
- In each round, each processor performs the following steps:
 - 1. Receive messages from neighbors.
 - 2. Execute a local (randomized) computation.
 - 3. Sends messages of $O(\log n)$ bits to every neighbor.
- Last round: all processors stop and output a local output.
- Complexity measure: #rounds.

Distributed Property Testing in the **CONGEST** Model (General Model ver.) [Censor-Hillel, Fischer, Schwartzman, Vasudev. 2016]

- A graph G = (V, E).
- Edge-distance: $dist(G, G') \triangleq |E\Delta E'|$
 - The edge-distance between two graphs = #edges in the symmetric diff.
- A graph property *P*.
 - Set of all graphs that have the property *P*.
- Distance from $P: dist(G, P) \triangleq \min_{G' \in P} dist(G, G').$
- *G* is ϵ -far from P : $dist(G, P) \ge \epsilon \cdot |E|$.

•
$$\epsilon$$
-tester for P :
$$\begin{cases} G \in P, & \forall v \in V \text{ output } ACCEPT \\ G \text{ is } \epsilon\text{-far from } P, \exists v \in V \text{ output } REJECT \text{ w. } p. 2/3 \end{cases}$$

P

dist(G,P)

Studied Problems

• The Subgraph-Freeness Problem.

- Given a graph H, s.t. H = O(1).
- *P* = {*All the graphs that does not contain H as a subgraph*}.
- Examples: *T*-freeness, *K*_S-freeness, *C*_S-freeness.

Cycle-freeness

• $P = \{All \ the \ graphs \ that \ are \ acyclic\}.$

• Bipartiteness

• $P = \{All \ the \ graphs \ that \ are \ Bipartite\}.$

Overview of Previous Results

- Initiated by Brakerski, Patt-Shamir 2011.
 - Testing algorithm for finding large *near-cliques* in the graph.
- Censor-Hillel, Fischer, Schwartzman, and Vasudev, DISC 2016.
 - Property testing in **CONGEST**
 - Triangle-freeness, cycle-freeness, bipartiteness.
 - Lower bounds $\Omega(\log |V|)$ for Bipartiteness, and Cycle-freeness.
- Fraigniaud, Rapaport, Salo, and Todinca, DISC 2016.
 - Tester for *H*-freeness, $|V(H)| \le 4$
 - For |V(H)| > 4 presented a "hard" family for algs with "natural" properties.
- Pierre Fraigniaud and Dennis Olivetti, SPAA 2017.
 - Tester for C_s -freeness, $s \ge 4$.

Overview of Main Results

• *H*-freeness:

- $O(1/\epsilon)$ #rounds,
- For a large family of graphs H, where |H| = O(1).

• *T*-freeness:

- A deterministic **CONGEST** alg.
- Decision alg.
- Constant #rounds.
- *K_s*-freeness:
 - $s \ge 3$, • $O\left(|E|^{\frac{1}{2}-\frac{1}{s-2}} \cdot e^{-\frac{1}{2}-\frac{1}{s-2}}\right)$ #rounds.

• Reducing the dependency on the diameter

- **Bipartiteness**: $O((\log |V|)/\epsilon)$ #rounds.
- Testing and correcting Cycle-freeness: $O((\log |V|)/\epsilon)$ #rounds.

First Note

Reut Levi

Introducing Distributed Correction

- Reducing the Dependency on the Diameter and Applications
 - Testing **Bipartiteness**,
 - Testing Cycle-freenes,
 - Corrector for Cycle-freeness.

- Testers for *H*-freeness for $|V(H)| \leq 4$.
 - $O(\epsilon^{-1})$ rounds.

• *T*-freeness

- Centralized testing for any tree T.
- Distributed simulation: ϵ -tester with $O(k^{k^2+1} \cdot \epsilon^{-k})$ rounds.

Distributed Correctors: Motivation

- *e*-tester
 - *G* is ϵ -far from $P \to \exists v \in V$ that outputs **REJECT** w.p $\geq 2/3$. • That is, $dist(G, P) \geq \epsilon \cdot |E|$.
- \Rightarrow 1 vertex shouts "**NO**" even though there are $\geq \epsilon \cdot |E|$ "violations".
 - Lots of edges to add or remove!
- We prefer:
 - Having that ϵ fraction of |V| output **REJECT**.
 - Having that dist(G, P) vertices output **REJECT**.
- Or even better, that *G* locally "correct" itself!

Distributed Corrector

A graph property P is *edge-monoton* (EM) if $G \in P$ and G' is obtained from G by the removal of edges, then $G' \in P$.

dist(G, P) min #edges that should be removed from G
in order to obtain the property P.

An algorithm is ϵ -corrector for property **P** if:

- $E' \subseteq E$,
- $G(V, E \setminus E') \in P$,
- $|E'| \leq dist(G, P) + \epsilon \cdot |E|,$
- Upon termination $\forall v \in V : knows E'(v)$.

Example: Cycle-freeness corrector: $E \setminus E'$ is acyclic.

dist(G, P)

P

Prelim. I: (β, d) -decomposition [Miller, Peng, Chen Xu 2013]

Partition of V into disjoint subsets $V_1, ..., V_k$:

- $\forall 1 \leq i \leq k$: *G*[*V***_{***i***}] is connected.**
 - *G*[*V_i*]: vertex induced subgraph of *G*, induced by *V_i*.
- $\forall 1 \leq i \leq k$: $diam(G[V_i]) \leq d$,
- #*cut edges* $\leq \beta \cdot |E|$.

G = (V, E)

 V_1

 V_3

 V_2

Prelim. II: Alg $(\epsilon, (\log n)/\epsilon)$ -decomposition in CONGEST [Elkin & Neiman 2017]

 V_i

Thm. An $(\epsilon, O(\log n / \epsilon))$ -decomposition can be computed

- Randomized CONGEST-model,
- $O((\log n)/\epsilon)$ rounds,
- w.p. $\geq 1 1/Poly(n)$.

At the end of the algorithm:

- There is a spanning rooted tree T_i for each subset V_i .
- Each $v \in V_i$ knows: the root of T_i , its parent in T_i .
- Each $v \in V_i$ knows which of the edges incident to it are cut-edges.

Algorithms for $(\epsilon, (\log n)/\epsilon)$ -decompositions were developed in the context of parallel algorithms:

[•] Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Low-diameter graph decomposition is in NC. In Scandinavian Workshop on Algorithm Theory, pages 83–93. Springer, 1992.

[•] Guy E Blelloch, Anupam Gupta, Ioannis Koutis, Gary L Miller, Richard Peng, and Kanat Tangwongsan. Nearly-linear work parallel sdd solvers, low-diameter decomposition, and low-stretch subgraphs. Theory of Computing Systems, 55(3):521–554, 2014.

[•] Gary L Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using random shifts. In Proceedings of the twenty-fifth annual ACM symposium on Parallelism in algorithms and architectures, pages 196–203. ACM, 2013.

A graph property *P* is *edge-monotone* (EM) if $G \in P$ and G'is obtained from *G* by the removal of edges, then $G' \in P$. Reducing #rounds $O(Diam) \rightarrow O(\epsilon^{-1}\log n)$

- A graph property *P* is non-disjointed (ND) if for every witness *G*' against *G* ∈ *P*, there exists an induced subgraph *G*'' of *G*' that is connected such that *G*'' is also a witness against *G* ∈ *P*.
- Verifier for *P*: a distributed algorithm in which all vertices accept iff *G* ∈ *P*.

Thm. Let *P* be an edge-monotone non-disjointed graph property, let *G* be the input graph.

- Verifier in **O**(**Diam**(**G**)) rounds
- $\Rightarrow \exists \epsilon$ -tester in $O((\log n)/\epsilon)$ rounds w.p. ≥ 1 - 1/Poly(n).

 $\epsilon - tester \text{ for } P$ $\#rounds = O((\log n)/\epsilon)$ Verifier for P #rounds = O(diam(G))

Applications

Corollary. *e***-tester** in the randomized CONGEST-model for:

- Bipartiteness. #rounds = $O((\log n)/\epsilon)$,
- Lower bound $\Omega(\log n)$ [Censor-Hillel, Fischer, Schwartzman, Vasudev. 2016].
- Improves over $Poly(\epsilon^{-1}log n)$ in the bounded degree model of [CHFSV 2016]
- Cycle-Freeness. #rounds = $O((\log n)/\epsilon)$.

Theorem. $\exists \epsilon$ -corrector for Cycle-Freeness in the randomized CONGEST-model.

• #rounds = $O((\log n)/\epsilon)$.

A Corrector. V_1 V_2

 V_3

G = (V, E)

An algorithm is ϵ -corrector for property **P** if:

- $E' \subseteq E$,
- $G(V, E \setminus E') \in P$,
- $|E'| \leq dist(G, P) + \epsilon \cdot |E|$,
- Upon termination $\forall v \in V : knows E'(v)$.

1st Intermezzo

Questions?

- My email: moti.medina@gmail.com
- Link to this note: https://arxiv.org/abs/1705.04898
 - "Faster and Simpler Distributed Algorithms for Testing and Correcting Graph Properties in the CONGEST-Model" by Guy Even, Reut Levi, and Moti Medina.

Thank you!

Second Note

In the CONGEST model, it is possible to check the presence of a fixed tree **T** of constant size, in **O(1)** rounds, deterministically.

There exists an ϵ -tester for **H** freeness, for any graph **H** of constant size composed by a tree, an edge, and arbitrary connections between the endpoints of the edge and the nodes of the tree, that requires $O(1/\epsilon)$ rounds in the CONGEST model.

Tree Detection

Tree Detection

Tree Detection

Congestion

Sparsification of the intermediate solutions

Given a set of sets S, we need to find a representative set R, such that:

- It is small
- $\mathbf{R} \subseteq \mathbf{S}$
- For any other possible set t (of some constant fixed length), if there is a set s∈S disjoint with t, then there is also a set r∈R disjoint with t.
 Lemma [Erdős, Hajnal, Moon '64]:
 R is of constant size.

Representative Sets

$R = \{(1, 2), (4, 5), (6, 7)\} \text{ is a representative set of} \\S = \{(1, 2), (1, 3), (4, 5), (6, 7), (8, 9), (8, 10), (8, 11), (9, 12)\}$

Given:	Disjoint with it:
(1,2)	(4,5)
(4,5)	(6,7)
(1,4)	(6,7)
(10,20)	(1,2)

Property testing

1. Choose one edge uniformly at random

2.Execute (a slightly modified version of) the tree detection algorithm

Open Problems

2nd Intermezzo

Questions?

Third Note

- 1. Simpler algorithm for C_k -freeness in $O\left(\frac{1}{\epsilon}\right)$ rounds
- 2. Algorithm for finding any tree T in O(1) rounds (exact)
- 3. Combination: general class, including all 5-vertex graphs except K_5 , in $O\left(\frac{1}{\epsilon}\right)$ rounds
- 4. Algorithm for k-clique freeness in $O\left(m^{\frac{1}{2}-\frac{1}{k-2}} \cdot e^{-\frac{1}{2}-\frac{1}{k-2}}\right)$ rounds
 - For triangles: if $\epsilon \ge \min\left\{m^{-\frac{1}{3}}, \frac{n}{m}\right\}$, in O(1) rounds!

Main Ingredient #1: Disjoint Copies

Well-known observation:

- If G is ϵ -far from H-free, then
- G contains $\frac{\epsilon \cdot m}{|E(H)|}$ edge-disjoint copies of H

 \Rightarrow random edge participates in H w.p. $\geq \epsilon$

Main Ingredient #2: Color Coding

- [Alon, Yuster, Zwick '95]
- Idea: to find C_k ,

Main Ingredient #2: Color Coding

- [Alon, Yuster, Zwick '95]
- The problem...

Main Ingredient #2: Color Coding

- [Alon, Yuster, Zwick '95]
- Solution:

Algorithm 1: C_k -freeness

• Step 1: color coding

- Step 1: color coding
- Step 2: select random directed edge colored (0,1)

- Step 1: color coding
- Step 2: select random directed edge colored (0,1)
- Step 3: color-coded BFS

- Step 1: color coding
- Step 2: select random directed edge colored (0,1)
- Step 3: color-coded BFS

- Assign random weight to each edge
- Defer to lowest-weight edge

• Step 1: color coding

- Step 1: color coding
- Step 2: convergecast
 - Initially:
 - State = "closed" if color = leaf of T
 - State = "open" otherwise
 - In each round: send (state, color)
 - If received ("closed", v) for each child v in T: set state to "closed"

- Step 1: color coding
- Step 2: convergecast
 - Initially:
 - State = "closed" if color = leaf of T
 - State = "open" otherwise
 - In each round: send (state, color)
 - If received ("closed", v) for each child v in T: set state to "closed"

- Step 1: color coding
- Step 2: convergecast
 - Initially:
 - State = "closed" if color = leaf of T
 - State = "open" otherwise
 - In each round: send (state, color)
 - If received ("closed", v) for each child v in T: set state to "closed"

- Step 1: color coding
- Step 2: convergecast
 - Initially:
 - State = "closed" if color = leaf of T
 - State = "open" otherwise
 - In each round: send (state, color)
 - If received ("closed", v) for each child v in T: set state to "closed"

Combination

Characterization 1:

• $\exists edge \{u, v\}$ s.t. any cycle in H contains u or v (or both)

Combination

Characterization 2:

- 1. Start with edge $\{0,1\}$
- 2. Add "disjoint" cycles including 0, 1 or both
- 3. Add "disjoint" trees rooted at prior nodes
- 4. Connect 0, 1 freely

Examples

Finale

Questions?

D Major Arpeggio

Copyright © Simon Powis 2014 www.classicalguitarcorner.com

Thank you from all of us!