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Core-periphery networks

A novel network architecture for parallel and
distributed computing, inspired by social networks and
complex systems, proposed by Avin, Borokhovicha,
Lotker, and Peleg.

A core-periphery network G = (V,E) has its node set
partitioned into a core C and a periphery P, and
satisfies the following axioms:

Core boundary

Clique emulation

Periphery-core
convergecast
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Axiom 1: Core boundary

For every node v ∈ C, degC(v) ' degP(v), where, for S ⊆ V
and v ∈ V, degS(v) denotes the number of neighbors of v
in S.
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Axiom 2: Clique emulation

The core can emulate the clique in a constant number of
rounds in the CONGEST model. That is, there is a
communication protocol running in a constant number of
rounds in the CONGEST model such that, assuming that
each node v ∈ C has a message Mv,w on O(logn) bits for
every w ∈ C, then, after O(1) rounds, every w ∈ C has
received all messages Mv,w, for all v ∈ C.



Introduction Clique emulation Minimum Spanning Tree Conclusions

Axiom 3: Periphery-core convergecast

There is a communication protocol running in a constant
number of rounds in the CONGEST model such that,
assuming that each node v ∈ P has a message Mv on
O(logn) bits, then, after O(1) rounds, for every v ∈ P, at
least one node in the core has received Mv.

x 2
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Using 2 rounds to emulate the clique

We want to remove many edges from K5
1
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Using 2 rounds to emulate the clique

Consider the Johnson graph J(n,3)
{1, 2, 3}

{1, 2, 4}

{1, 2, 5}

{1, 3, 4}

{1, 3, 5}{1, 4, 5}

{2, 3, 4}

{2, 3, 5}

{2, 4, 5}

{3, 4, 5}
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Using 2 rounds to emulate the clique

I0 = {{x,y, z} ∈ V(J(n,3)) | x+ y+ z ≡ 0 (mod n)}
{1, 2, 3}

{1, 2, 4}

{1, 2, 5}

{1, 3, 4}

{1, 3, 5}{1, 4, 5}

{2, 3, 4}

{2, 3, 5}

{2, 4, 5}

{3, 4, 5}
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Using 2 rounds to emulate the clique

I0 = {{1,4,5}, {2,3,5}}. Remove {1,4} and {2,3}.
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It is possible to remove approx. 1
3 of the edges.
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Using more rounds to emulate the clique

The message of bi is routed to bi′ via node ak where
i+ i′ + k ≡ 0 (mod a)

b0 b1 b2

a1 a2a0
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Using more rounds to emulate the clique

Many groups of b nodes can do the same concurrently. . .

b0,0 b0,1 b0,2 b1,0 b1,1 b1,2

a1 a2a0
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Using more rounds to emulate the clique

. . . and use the same schema to communicate with other
groups.

b0,0 b0,1 b0,2 b1,0 b1,1 b1,2

a1 a2a0
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Using more rounds to emulate the clique

The message of bi,j is routed to bi′,j′ via node ak where
j+ j′ + k ≡ 0 (mod a) in round i′ − i.

This schema requires 2 rounds for each group.

The communication can be pipelined.

In total, b
a + 1 rounds are required.
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Tradeoff between edges and rounds

Let n ≥ 1, and k ≥ 3. There is an n-node graph with
k−2

(k−1)2 n2 edges that can emulate the n-node clique in k

rounds. Also, there is an n-node graph with 1
3n

2 edges that
can emulate the n-node clique in 2 rounds.

Let n ≥ 1, k ∈ {1, . . . ,n− 1}, and let G be an n-node graph
that can emulate the n-node clique in k rounds. Then G
has at least n(n−1)

k+1 edges.
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Random graphs Gn,p

Idea 1: for any missing edge, send the message to a
random relayer.

Assuming independence, it is like balls and bins, every
edge has a load of 1

p in expectation.

The most load edge has load (1
p × logn

log logn), bad when p
is constant.

The process is not fully independent
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Idea 2: Use the power of many choices

5 3 4 7

· · ·

· · ·

· · ·Senders

Relayers

Receivers
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Idea 2: Use the power of many choices

5 3 4 7

2 1
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Idea 2: Use the power of many choices

5 3 4 7

2 1

· · ·

· · ·

· · ·Senders

Relayers

Receivers

Let c ≥ 0, n ≥ 1, α =
√
(3 + c)e/(e− 2) where e is the

base of the natural logarithm, and p ≥ α
√

lnn/n. For
G ∈ Gn,p, Pr[G can emulate Kn in O(min{ 1

p2 ,np}) rounds] ≥
1−O( 1

n1+c )
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Minimum Spanning Tree

MST in the Congest model:

D = 1: O(log∗ n) randomized, O(log logn) deterministic

D = 2: O(logn) deterministic

D ≥ 3: Ω( 3
√
n)

Core-Periphery (D ≈ 4): O(log2 n) randomized
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MST by example
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MST by example
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MST by example

1 5 8 9
10 5 11
9 5 10
1 2 1

2 16 2 3
13 2 2
6 2 7
2 1 1

3 14 9 12
8 5 9

12 8 13
3 2 4

4 11 2 6
15 11 8
7 12 14
4 2 5
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Nodes in the core need to:
1 Find the best edge of each fragment
2 Do pointer jumping and find the root

of the merge tree

by avoiding congestion: they can send
messages of size O(logn)
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Algorithms from the Congested Clique

Lenzen routing protocol

Given a clique of n nodes, if each node is the sender and
receiver of O(n) messages, it is possible to exchange the
messages in O(1).

Lenzen sorting protocol

Given a clique of n nodes, if each node has O(n) keys, all
the O(n2) keys can be sorted in O(1).
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Avoiding congestion

Sort the edges by tails and find the best edge of each
fragment

1 5 1 23
5 1 17
1 5 17

2 1 5 23
3 5 1 24

5 1 16
1 5 16

4 1 5 15
5 1 15

−→

1 5 1 17
1 5 17

2 1 5 23
3 5 1 16

1 5 16
4 1 5 15

5 1 15

−→

1 1 5 17
1 5 23
1 5 16
1 5 15

2 5 1 17
5 1 16
5 1 15

−→ 1 1 5 15
2 5 1 15

Sort the remaining edges by their heads to group
edges of the merge-tree by common parents
At this point each node the core (that is of size O(

√
n))

has to send and receive O(
√
n), we can use Lenzen

routing protocol to perform 1 step of pointer jumping.
logn steps of Pointer jumping could be necessary, but
they can be deferred to the next phases
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Avoiding congestion

Sort the edges by tails and find the best edge of each
fragment
Sort the remaining edges by their heads to group
edges of the merge-tree by common parents

1 1 2
2 1
3 2
4 2

2 5 8
6 2
7 12
8 5

3 9 5
10 5
11 2
12 8

4 13 2
14 9
15 11
16 2

−→

1 2 1
1 2
3 2
4 2

2 6 2
Only 1 request is needed

11 2
13 2
16 2

3 8 5
9 5

10 5
5 8

4 12 8
14 9
15 11
7 12

At this point each node the core (that is of size O(
√
n))

has to send and receive O(
√
n), we can use Lenzen

routing protocol to perform 1 step of pointer jumping.
logn steps of Pointer jumping could be necessary, but
they can be deferred to the next phases
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Conclusions

Optimal tradeoff between edges and rounds to
emulate the clique.

Clique emulation by random graphs in O( 1
p2 ), can we

do better?

O(logn) deterministic algorithm for MST construction,
can we do better?
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Thank you
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