Clique emulation

Minimum Spanning Tree

Conclusions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つの()~

Sparsifying Congested Cliques and Core-Periphery Networks

A. Balliu, P. Fraigniaud, Z. Lotker, and D. Olivetti

Introductio	n
0000	

Clique emulation

Minimum Spanning Tree

Conclusions

Core-periphery networks

- A novel network architecture for parallel and distributed computing, inspired by social networks and complex systems, proposed by Avin, Borokhovicha, Lotker, and Peleg.
- A core-periphery network *G* = (*V*, *E*) has its node set partitioned into a *core C* and a *periphery P*, and satisfies the following axioms:
 - Core boundary
 - Clique emulation
 - Periphery-core convergecast

Introduction ○●○○ Clique emulation

Minimum Spanning Tree

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Axiom 1: Core boundary

For every node $v \in C$, $\deg_C(v) \simeq \deg_P(v)$, where, for $S \subseteq V$ and $v \in V$, $\deg_S(v)$ denotes the number of neighbors of vin S.

Clique emulation

Minimum Spanning Tree

Conclusions

Axiom 2: Clique emulation

The core can emulate the clique in a constant number of rounds in the CONGEST model. That is, there is a communication protocol running in a constant number of rounds in the CONGEST model such that, assuming that each node $v \in C$ has a message $M_{v,w}$ on $O(\log n)$ bits for every $w \in C$, then, after O(1) rounds, every $w \in C$ has received all messages $M_{v,w}$, for all $v \in C$.

Minimum Spanning Tree

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

Conclusions

Axiom 3: Periphery-core convergecast

There is a communication protocol running in a constant number of rounds in the CONGEST model such that, assuming that each node $v \in P$ has a message M_v on $O(\log n)$ bits, then, after O(1) rounds, for every $v \in P$, at least one node in the core has received M_v .

Clique emulation •0000 Minimum Spanning Tree

Conclusions

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

Using 2 rounds to emulate the clique

We want to remove many edges from K_5

Clique emulation •0000 Minimum Spanning Tree

Conclusions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Using 2 rounds to emulate the clique

Clique emulation •0000 Minimum Spanning Tree

Conclusions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Using 2 rounds to emulate the clique

Clique emulation •0000 Minimum Spanning Tree

Conclusions

Using 2 rounds to emulate the clique

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Clique emulation

Minimum Spanning Tree

Conclusions

Using more rounds to emulate the clique

The message of b_i is routed to $b_{i'}$ via node a_k where $i + i' + k \equiv 0 \pmod{a}$

Minimum Spanning Tree

Conclusions

Using more rounds to emulate the clique

Many groups of b nodes can do the same concurrently...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Clique emulation

Minimum Spanning Tree

Conclusions

Using more rounds to emulate the clique

... and use the same schema to communicate with other groups.

Clique emulation 00000 Minimum Spanning Tree

Conclusions

▲□▶▲□▶▲□▶▲□▶ □ のQで

Using more rounds to emulate the clique

The message of $b_{i,j}$ is routed to $b_{i',j'}$ via node a_k where $j+j'+k \equiv 0 \pmod{a}$ in round i'-i.

- This schema requires 2 rounds for each group.
- The communication can be pipelined.
- In total, $\frac{b}{a} + 1$ rounds are required.

Conclusions

Tradeoff between edges and rounds

Let $n \ge 1$, and $k \ge 3$. There is an *n*-node graph with $\frac{k-2}{(k-1)^2} n^2$ edges that can emulate the *n*-node clique in k rounds. Also, there is an *n*-node graph with $\frac{1}{3}n^2$ edges that can emulate the *n*-node clique in 2 rounds.

Let $n \ge 1$, $k \in \{1, ..., n-1\}$, and let G be an n-node graph that can emulate the n-node clique in k rounds. Then G has at least $\frac{n(n-1)}{k+1}$ edges.

Introduction 0000	Clique emulation	Minimum Spanning Tree	Conclusions
Random	$aranhs G_{-}$		

Idea 1: for any missing edge, send the message to a random relayer.

- Assuming independence, it is like balls and bins, every edge has a load of $\frac{1}{p}$ in expectation.
- The most load edge has load $(\frac{1}{p} \times \frac{\log n}{\log \log n})$, bad when p is constant.
- The process is not fully independent

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Idea 2: Use the power of many choices

Idea 2: Use the power of many choices

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

Idea 2: Use the power of many choices

Let $c \ge 0$, $n \ge 1$, $\alpha = \sqrt{(3+c)e/(e-2)}$ where e is the base of the natural logarithm, and $p \ge \alpha \sqrt{\ln n/n}$. For $G \in \mathcal{G}_{n,p}$, $\Pr[G$ can emulate K_n in $O(\min\{\frac{1}{p^2}, np\})$ rounds] $\ge 1 - O(\frac{1}{n^{1+c}})$

Clique emulation

Minimum Spanning Tree

Conclusions

ション ふゆ マ キャット マンシン

Minimum Spanning Tree

MST in the Congest model:

- D = 1: $O(\log^* n)$ randomized, $O(\log \log n)$ deterministic
- D = 2: $O(\log n)$ deterministic
- $D \geq 3: \Omega(\sqrt[3]{n})$
- Core-Periphery ($D \approx 4$): $O(\log^2 n)$ randomized

Clique emulation

Minimum Spanning Tree

Conclusions

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つの()~

Minimum Spanning Tree

MST in the Congest model:

- D = 1: $O(\log^* n)$ randomized, $O(\log \log n)$ deterministic
- D = 2: $O(\log n)$ deterministic
- $D \geq 3: \Omega(\sqrt[3]{n})$
- Core-Periphery ($D \approx 4$): $O(\log n)$ deterministic

Clique emulation

Conclusions

MST by example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Clique emulation

Conclusions

MST by example

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Clique emulation

Minimum Spanning Tree ○●○○ Conclusions

MST by example

1	5	8	9
	10	5	11
	9	5	10
	1	2	1
2	16	2	3
	13	2	2
	6	2	7
	2	1	1
3	14	9	12
	8	5	9
	12	8	13
	3	2	4
4	11	2	6
	15	11	8
	7	12	14
	4	2	5

Nodes in the core need to:

- Find the best edge of each fragment
- O pointer jumping and find the root of the merge tree

by avoiding congestion: they can send messages of size $O(\log n)$

Clique emulation

Minimum Spanning Tree

Conclusions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Algorithms from the Congested Clique

Lenzen routing protocol

Given a clique of n nodes, if each node is the sender and receiver of O(n) messages, it is possible to exchange the messages in O(1).

Lenzen sorting protocol

Given a clique of *n* nodes, if each node has O(n) keys, all the $O(n^2)$ keys can be sorted in O(1).

Avoiding c	ongestion		
Introduction 0000	Clique emulation	Minimum Spanning Tree 000●	Conclusions

• Sort the edges by tails and find the best edge of each fragment

	1	5	1	23						
		5	1	17		1	5	1	17	
		1	5	17			1	5	17	
	2	1	5	23		2	1	5	23	-
	3	5	1	24	\longrightarrow	3	5	1	16	\rightarrow
		5	1	16			1	5	16	
		1	5	16	-	4	1	5	15	-
	4	1	5	15	-		5	1	15	
		5	1	15						
	1	1	5	17						
	-	1	5	23						
		1	5	25						
		T	5	16		1	1	5	15	
		1	5	15	\longrightarrow	-	-	1	15	-
1	2	5	1	17	-	2	5	1	12	
		5	1	16						
		5	1	15						

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Avaiding	conception	000
Avoidind	condestion	

- Sort the edges by tails and find the best edge of each fragment
- Sort the remaining edges by their heads to group edges of the merge-tree by common parents

1	1	2		1	2	1	
	2	1			1	2	
	3	2			3	2	
	4	2			4	2	
2	5	8		2	6	2	·)
	6	2			11	2	
	7	12			13	2	Only 1 request is needed
	8	5	,		16	2	j
3	9	5		3	8	5	. /
	10	5			9	5	
	11	2			10	5	
	12	8			5	8	
4	13	2		4	12	8	-
	14	9			14	9	
	15	11			15	11	
	16	2			7	12	

・ロト ・ 同ト ・ ヨト ・ ヨー ・ クタマ

▲□▶▲□▶▲□▶▲□▶ □ のQで

Avoiding congestion

- Sort the edges by tails and find the best edge of each fragment
- Sort the remaining edges by their heads to group edges of the merge-tree by common parents
- At this point each node the core (that is of size $O(\sqrt{n})$) has to send and receive $O(\sqrt{n})$, we can use Lenzen routing protocol to perform 1 step of pointer jumping.

Avoiding congestion

- Sort the edges by tails and find the best edge of each fragment
- Sort the remaining edges by their heads to group edges of the merge-tree by common parents
- At this point each node the core (that is of size $O(\sqrt{n})$) has to send and receive $O(\sqrt{n})$, we can use Lenzen routing protocol to perform 1 step of pointer jumping.
- log n steps of Pointer jumping could be necessary, but they can be deferred to the next phases

Clique emulation

Minimum Spanning Tree

Conclusions ●00

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Conclusions

 Optimal tradeoff between edges and rounds to emulate the clique.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

- Optimal tradeoff between edges and rounds to emulate the clique.
- Clique emulation by random graphs in $O(\frac{1}{p^2})$, can we do better?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

- Optimal tradeoff between edges and rounds to emulate the clique.
- Clique emulation by random graphs in $O(\frac{1}{p^2})$, can we do better?
- $O(\log n)$ deterministic algorithm for MST construction, can we do better?

Clique emulation

Minimum Spanning Tree

Conclusions ○●○

Thank you

References

- C. Avin, M. Borokhovich, Z. Lotker, and D. Peleg.
 Distributed computing on core-periphery networks: Axiom-based design. In *ICALP (2)*, volume 8573 of *Lecture Notes in Computer Science*, pages 399–410.
 Springer, 2014.
- Christoph Lenzen. Optimal deterministic routing and sorting on the congested clique. In *PODC*, pages 42–50. ACM, 2013.
- M. Mitzenmacher. The power of two choices in randomized load balancing. IEEE Trans. Parallel Distrib. Syst., 12(10):1094–1104, 2001.