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LOCAL model
• Undirected simple graph G = (V, E) of n 

nodes and maximum degree Δ 

• Each node has a unique ID 

• Synchronous message passing model 

• Unbounded computation 

• Unbounded bandwidth
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CONGEST model
• Undirected simple graph G = (V, E) of n 

nodes and maximum degree Δ 

• Each node has a unique ID 

• Synchronous message passing model 

• Unbounded computation 

• O(log n)-bit messages
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Four classical problems

Maximal 
independent set

(Δ + 1)-vertex 
coloring

(2Δ - 1)-edge 
coloring

Maximal 
matching

These problems can be solved in  rounds [Rozhon, Ghaffari ’20]poly log n

These problems can be solved in  rounds [Faour, Ghaffari, Grunau, Kuhn, Rozhon '23]O(log2 Δ log n)

These problems require  rounds [Linial ’87]Ω(log* n)

Big question:    f(Δ) + O(log* n)
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[Balliu, Kuhn, Olivetti '20]
(log Δ)O(log log Δ) + O(log* n)-Edge 

Coloring
(2Δ − 1)!
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• Start from a graph of maximum degree Δ, 2-color the edges such that 
the graph induced by each color has maximum degree roughly Δ/2, 
Recurse on each subgraph.

• After  steps of recursion the maximum degree is T Δ ⋅ ( 1 + ε
2 )

T

• Let us fix  and T = log Δ ε = 1/log Δ
• After  steps each subgraph has constant maximum degreeT
• The number of colors is 2T ⋅ O(1) = O(Δ)
• Running time: log Δ ⋅ Tbalanced_2_col + Tfinal

A possible approach

Can be done in just O(log* n)This requires too much!
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• d-edge-defective 2-edge-coloring: color the edges with 
2 colors such that each edge has at most d incident 
edges of its color. 

This is the problem that we tried to solve, for

d ≤ Δ − 1
Ω(log n)

d ≤ (1 + ε)Δ
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d-edge-defective 2-edge-coloring:  

color the edges with 2 colors such that each edge has 
at most d incident edges of its color. 

For , the problem can be solved in 
 time! 

(for list coloring, we need a bit more)

d ≤ (1 + ε)Δ
O(poly(1/ϵ, log Δ))

Main Ingredient
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• Orient the edges of a graph such that, for each edge  oriented from 
 to , it holds that  

Efficient Load-Balancing through Distributed Token Dropping 

[Brandt, Keller, Rybicki, Suomela, Uitto 2021] 

This problem can be solved in  rounds!

(u, v)
u v degin(v) ≤ degin(u) + 1

O(Δ4)

Stable Orientation



• Stable orientation solves "balanced" edge 2-coloring, but: 

• The running time is , we want  

• We can turn a stable orientation into a edge 2-coloring only if a 2-
vertex coloring is given, we do not have that 

• The conversion only works on regular graphs, we do not have that 

• The recursion schema solves -edge coloring, not 
-edge coloring. For a better result, we need to solve a harder variant 
(list coloring)

O(Δ4) O(logc Δ)

O(Δ) (2Δ − 1)

Issues
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• Orient the edges of a graph such that, for each edge  oriented 
from  to , it holds that 

(u, v)
u v degin(v) ≤ degin(u) + k

• This problem can be solved in  rounds!O(Δ5/k5)

• For , this gives an  round algorithm!k =
Δ

log Δ
O(log5 Δ)

Relaxed Stable Orientation



Open questions: edge coloring

• We can solve -edge coloring in  rounds 

‣ Can we improve the exponent? We know a faster algorithm, but only for 
-edge coloring 

• Can we solve vertex coloring in subpoly(Δ)? 

• Can we prove a non-trivial lower bound for solving (2Δ - 1)-edge coloring? 

‣ Can we show that it cannot be solved in o(log Δ) + O(log* n)?

(2Δ − 1) O(log12 Δ + log* n)

O(Δ)



Open questions

u v

Stable Orientation: Orient the edges of a graph such that, for each edge  
oriented from  to , it holds that  

• This problem can be solved in  rounds  
[Brandt, Keller, Rybicki, Suomela, Uitto 2021] 

• Can we do better?

(u, v)
u v degin(v) ≤ degin(u) + 1

O(Δ4)



Thank you!


