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LOCAL model

» Undirected simple graph G = (V, E) of n
nodes and maximum degree /A

* Each node has a unique 1D
* Synchronous message passing model

* Unbounded computation

e Unbounded bandwidth
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Big question: f(A) + O(log™ n)
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Our results
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A possible approach

» Start from a graph of maximum degree A, 2-color the edges such that

o After 1" steps of recursion the maximum degree is A - (

the graph induced by each color has maximum degree roughly A/2,

Recurse on each subgraph.

Letusfix I' = log A ande = 1/log A
After | steps each subgraph has constant maximum degree

The number of colors is 27 - O(1) = O(A)
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A different subroutine

» d-node-defective 2-edge-coloring: color the edges with
2 colors such that each node has at most d incident
edges of the same color.

This is hard, even ford < A — 1.

It requires £2(log 77) rounds!

» d-edge-defective 2-edge-coloring: color the edges with
2 colors such that each edge has at most d incident
edges of its color.

This is the problem that we tried to solve, for

d<(l+eA
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Main Ingredient

d-edge-defective 2-edge-coloring:

color the edges with 2 colors such that each edge has
at most d incident edges of its color.

Ford < (1 + &)/, the problem can be solved in
O(poly(1/e,log A)) timel

(for list coloring, we need a bit more)
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Stable Orientation

e Orient the edges of a graph such that, for each edge (17, v) oriented from
utov,itholds thatdeg, (v) < deg, (1) + |

Efficient Load-Balancing through Distributed Token Dropping

|[Brandt, Keller, Rybicki, Suomela, Uitto 2021]

This problem can be solved in O(A%) rounds!




Issues

» Stable orientation solves "balanced” edge 2-coloring, but:
+ The running time is O(A”), we want O(log“ A)

* We can turn a stable orientation into a edge 2-coloring only if a 2-
vertex coloring is given, we do not have that

* The conversion only works on reqular graphs, we do not have that

» The recursion schema solves O(A )-edge coloring, not (2ZA — 1)

-edge coloring. For a better result, we need to solve a harder variant
(list coloring)
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Relaxed Stable Orientation

» Orient the edges of a graph such that, for each edge (1, ) oriented
from u to v, it holds that deg. (v) < deg. (1) + £

+ This problem can be solved in O(A”/k”) rounds!

A

, this gives an O(l()g5 A ) round algorithm!
log A

e Fork =




Open questions: edge coloring

» We can solve (ZA — |)-edge coloring in 0(1()g12 A + log™ n) rounds

>~ Can we improve the exponent? We know a faster algorithm, but only for
((A)-edge coloring

» Can we solve vertex coloring in subpoly(A)?

» Can we prove a non-trivial lower bound for solving (2A - 1)-edge coloring?

> Can we show that it cannot be solved in o(log A) + O(log* n)?



Open questions

Stable Orientation: Orient the edges of a graph such that, for each edge (11, )
oriented from u to v, it holds that deg. (v) < deg. (1) + |

+ This problem can be solved in O(A™) rounds
|[Brandt, Keller, Rybicki, Suomela, Uitto 2021]

e Can we do better?




Thank you!



