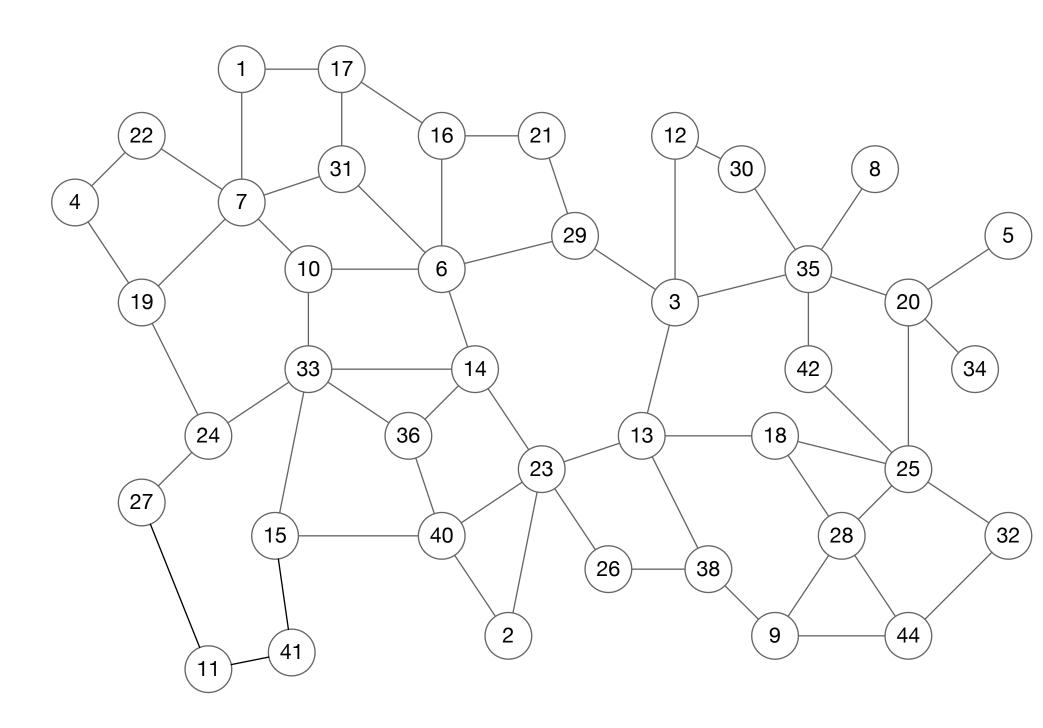
Distributed Edge Coloring in Time Polylogarithmic in Δ

¹ Gran Sasso Science Institute ² CISPA Helmholtz Center for Information Security ³ University of Freiburg

Alkida Balliu¹, Sebastian Brandt², Fabian Kuhn³, **Dennis Olivetti¹**

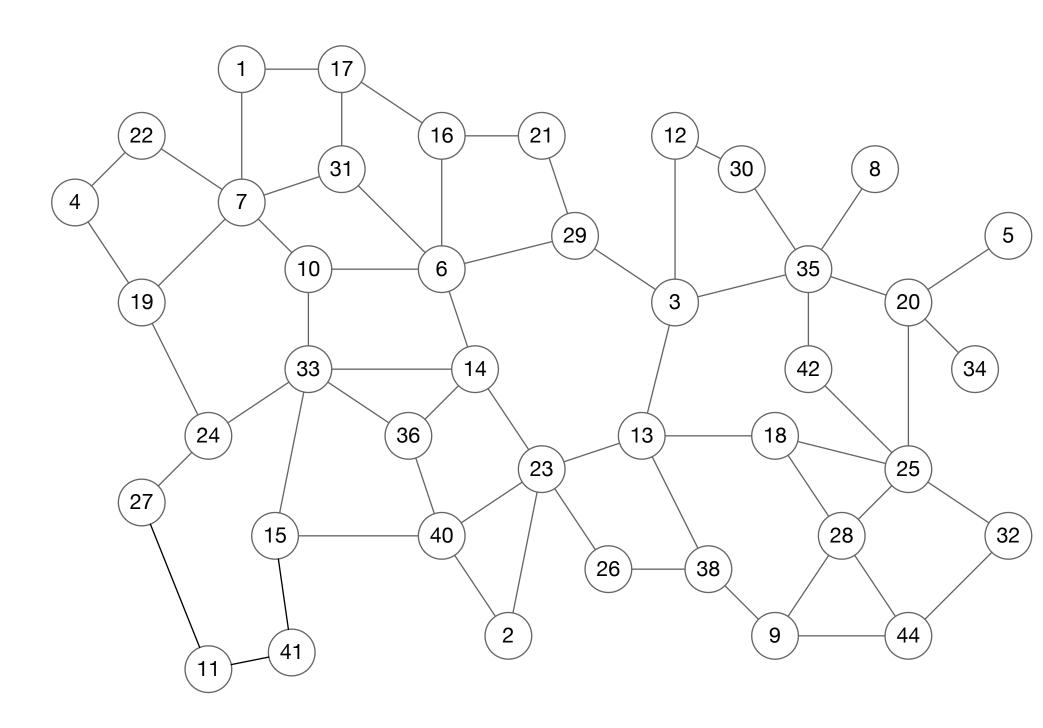
LOCAL model

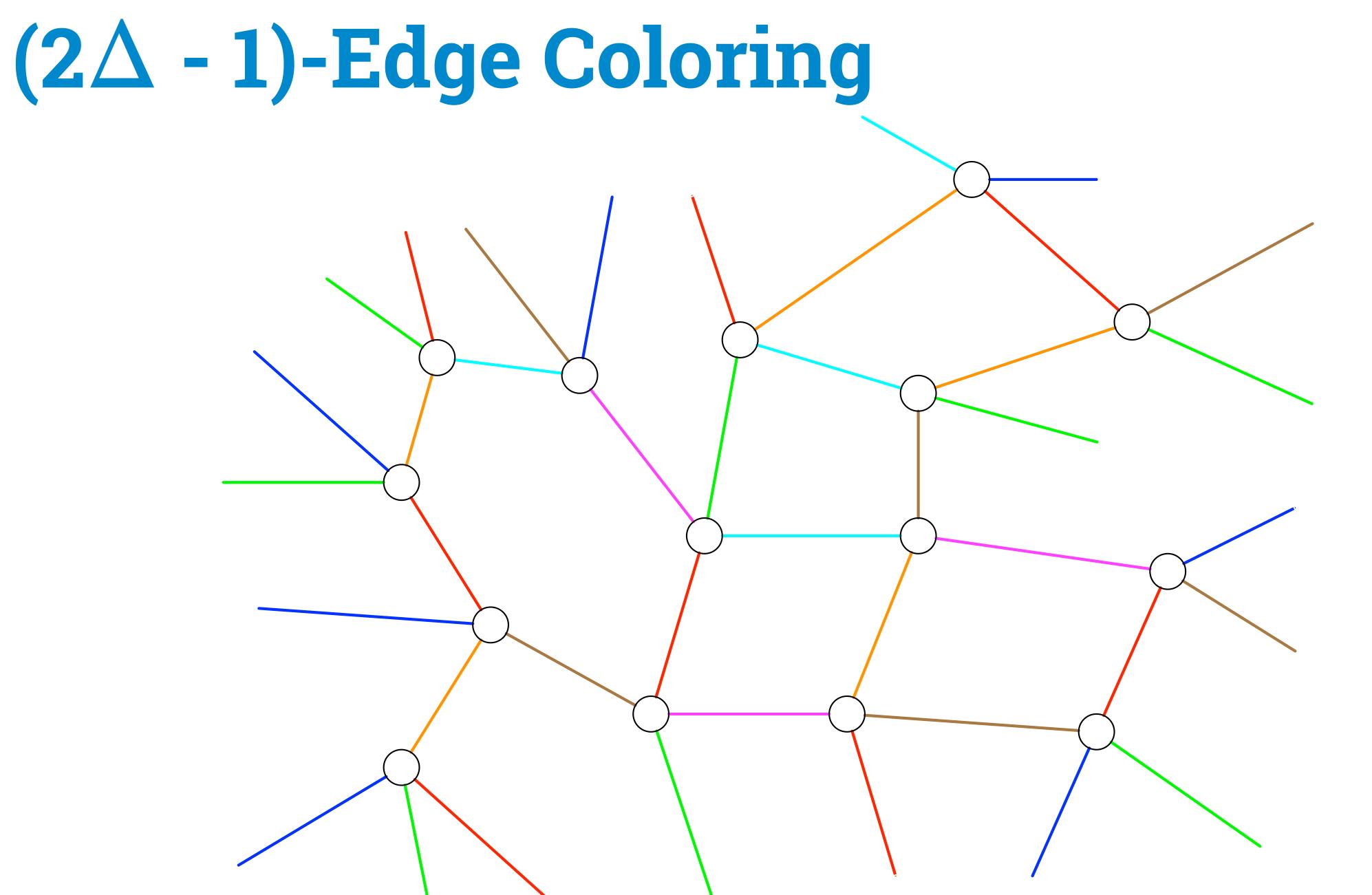
- Undirected simple graph G = (V, E) of *n* nodes and maximum degree Δ
- Each node has a unique ID
- Synchronous message passing model
- Unbounded computation
- Unbounded bandwidth

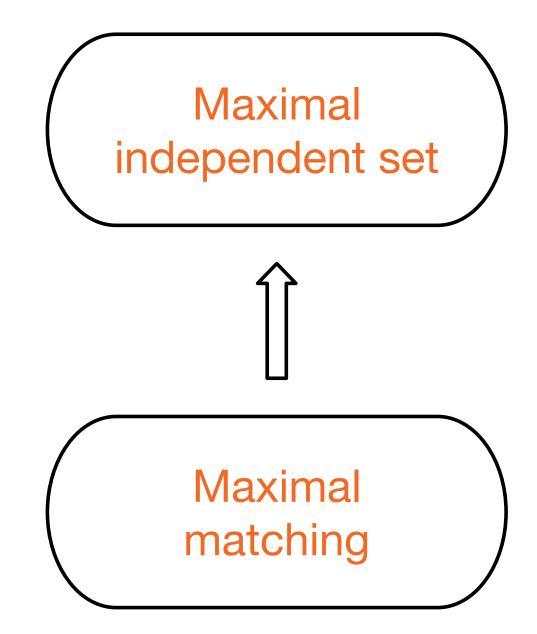


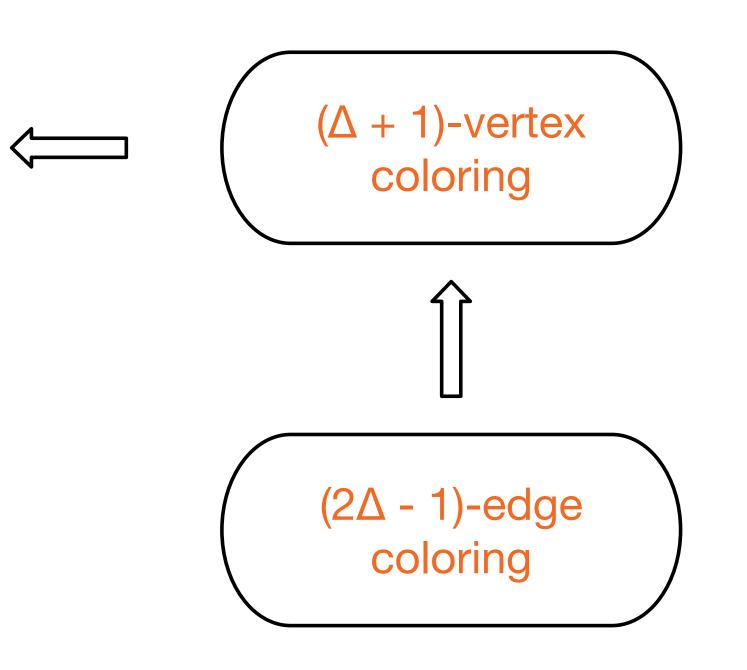
CONGEST model

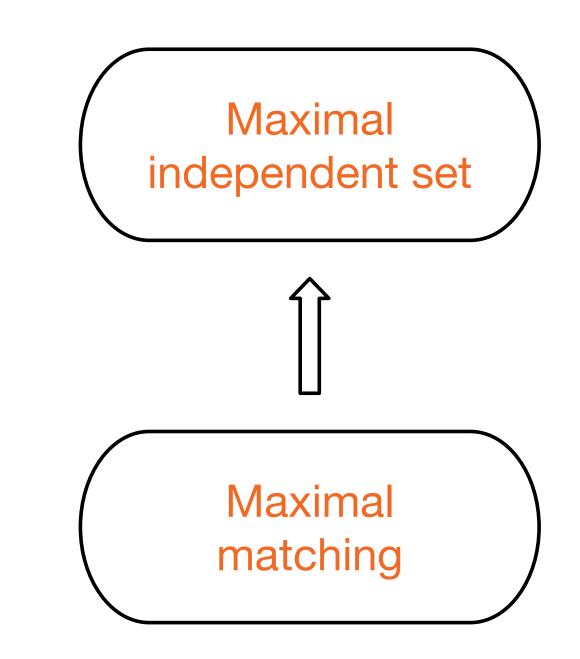
- Undirected simple graph G = (V, E) of *n* nodes and maximum degree Δ
- Each node has a unique ID
- Synchronous message passing model
- Unbounded computation
- O(log n)-bit messages



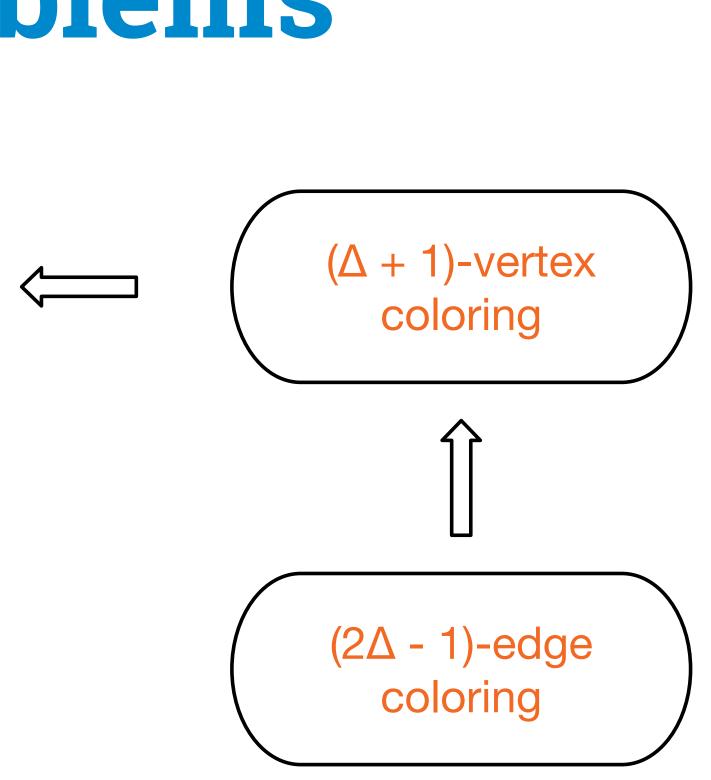


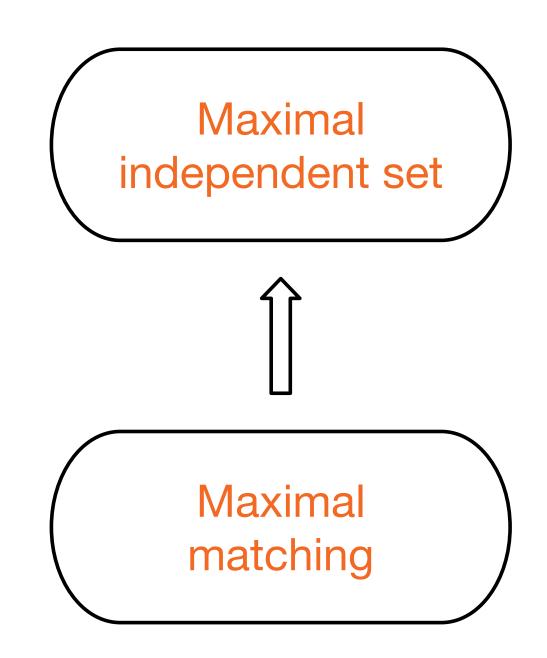




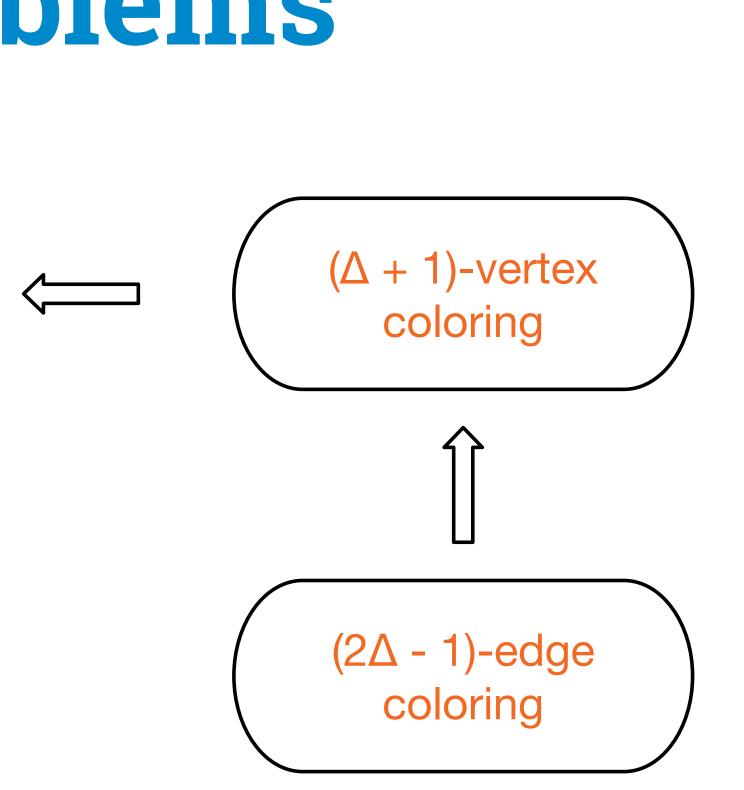


These problems can be solved in poly log *n* rounds [Rozhon, Ghaffari '20]

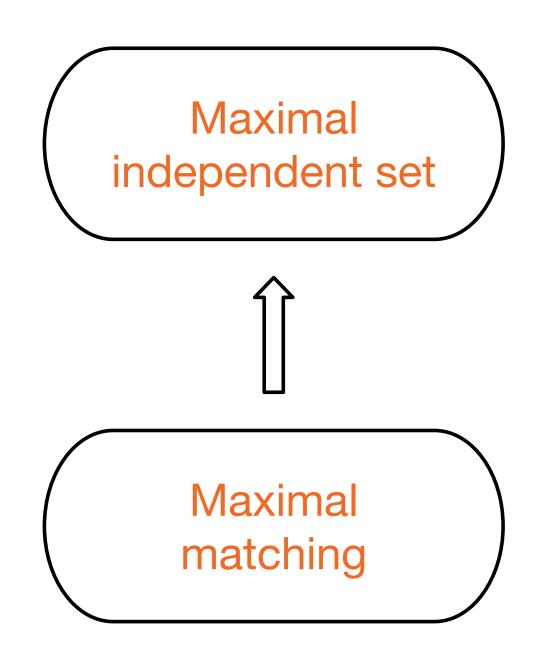




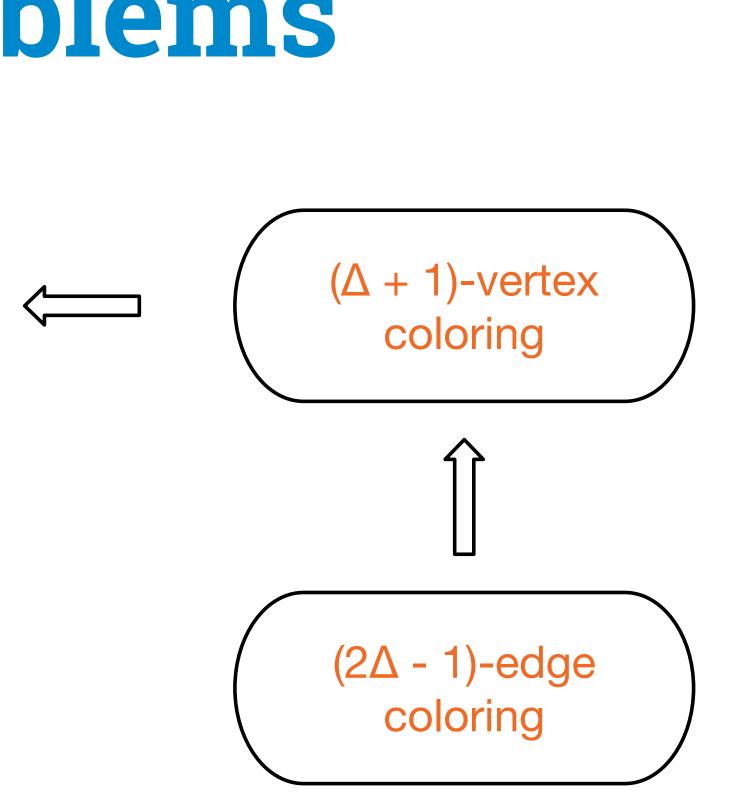
These problems can be solved in poly log *n* rounds [Rozhon, Ghaffari '20]



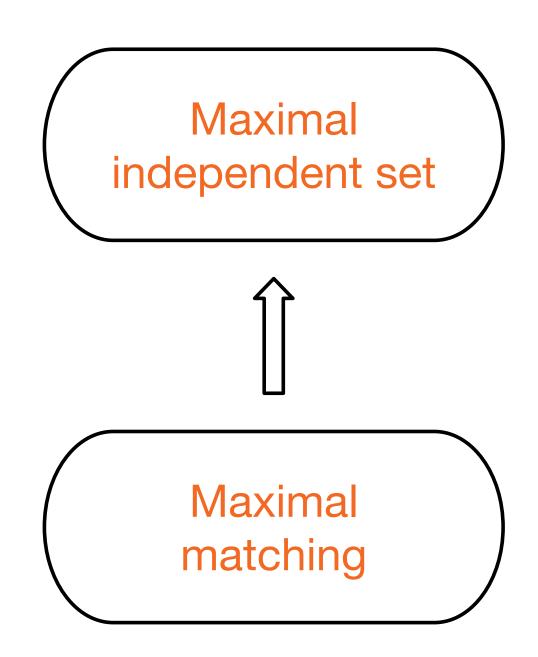
- These problems can be solved in $O(\log^2 \Delta \log n)$ rounds [Faour, Ghaffari, Grunau, Kuhn, Rozhon '23]



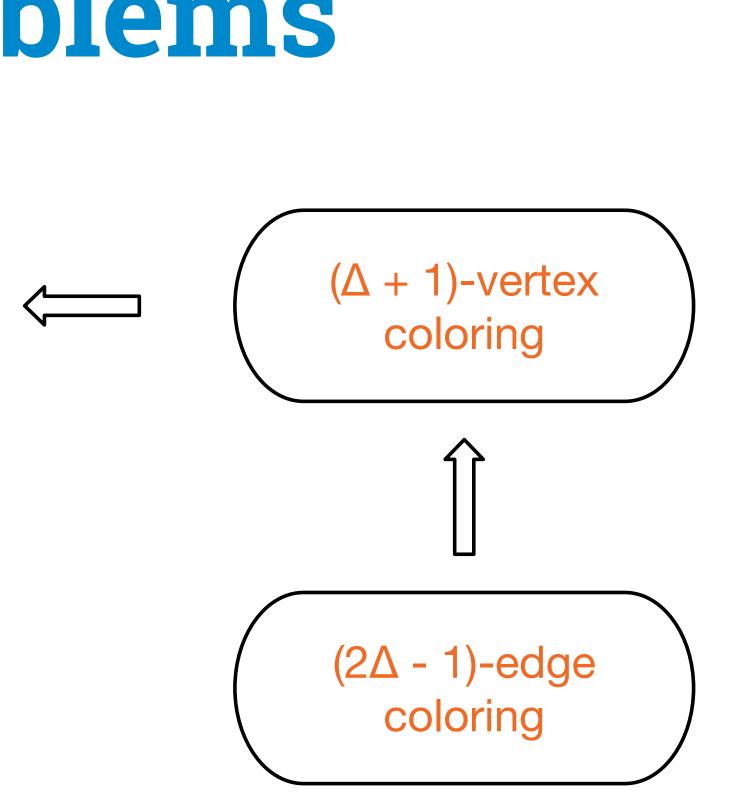
These problems can be solved in poly log *n* rounds [Rozhon, Ghaffari '20] These problems require $\Omega(\log^* n)$ rounds [Linial '87]



- These problems can be solved in $O(\log^2 \Delta \log n)$ rounds [Faour, Ghaffari, Grunau, Kuhn, Rozhon '23]



These problems can be solved in poly log *n* rounds [Rozhon, Ghaffari '20] These problems require $\Omega(\log^* n)$ rounds [Linial '87] Big question: $f(\Delta) + O(\log^* n)$



- These problems can be solved in $O(\log^2 \Delta \log n)$ rounds [Faour, Ghaffari, Grunau, Kuhn, Rozhon '23]

Maximal Matching

 $O(\Delta + \log^* n)$ [Panconesi, Rizzi '01]

$\Omega(\min\{\Delta, \log_{\Delta} n\})$ [BBHORS '19]

Maximal Matching

 $O(\Delta + \log^* n)$ [Panconesi, Rizzi '01]

Maximal Independent Set $O(\Delta + \log^* n)$ [Barenboim, Elkin, Kuhn '09]

$\Omega(\min{\{\Delta, \log_{\Delta} n\}})$ [BBHORS '19]

 $\Omega(\min{\{\Delta, \log_{\Delta} n\}})$ [BBHORS '19] [BBKO '22]

Maximal Matching

 $O(\Delta + \log^* n)$ [Panconesi, Rizzi '01]

Maximal **Independent Set**

 $O(\Delta + \log^* n)$ [Barenboim, Elkin, Kuhn '09]

 $(\Delta + 1)$ -Vertex Coloring

 $O(\sqrt{\Delta \log})$ [FHK '16] [BI

$\Omega(\min\{\Delta, \log_{\Lambda} n\})$ [BBHORS '19]

 $\Omega(\min\{\Delta, \log_{\Delta} n\})$ [BBHORS '19] [BBKO '22]

$$\overline{g\Delta} + \log^* n$$
)
EG '18] [MT '20]

Maximal Matching

 $O(\Delta + \log^* n)$ [Panconesi, Rizzi '01]

Maximal **Independent Set**

 $O(\Delta + \log^* n)$ [Barenboim, Elkin, Kuhn '09]

 $(\Delta + 1)$ -Vertex Coloring

 $O(\sqrt{\Delta \log})$ [FHK '16] [BE

 $(2\Delta - 1)$ -Edge Coloring

 $(\log \Delta)^{O(\log \log \Delta)} + O(\log^* n)$ [Balliu, Kuhn, Olivetti '20]

 $\Omega(\min\{\Delta, \log_{\Lambda} n\})$ [BBHORS '19]

 $\Omega(\min\{\Delta, \log_{\Lambda} n\})$ [BBHORS '19] [BBKO '22]

$$\overline{g\Delta} + \log^* n$$
)
EG '18] [MT '20]

Maximal Matching

 $O(\Delta + \log^* n)$ [Panconesi, Rizzi '01]

Maximal **Independent Set**

 $O(\Delta + \log^* n)$ [Barenboim, Elkin, Kuhn '09]

 $(\Delta + 1)$ -Vertex Coloring

 $O(\sqrt{\Delta \log})$ [FHK '16] [BE

 $(\log \Delta)^{O(\log \log \Delta)} + O(\log^* n)$ [Balliu, Kuhn, Olivetti '20]

 $\Omega(\min\{\Delta, \log_{\Lambda} n\})$ [BBHORS '19]

 $\Omega(\min\{\Delta, \log_{\Lambda} n\})$ [BBHORS '19] [BBKO '22]

$$\overline{g\Delta} + \log^* n$$
)
EG '18] [MT '20]

Our results

$(2\Delta - 1)$ -Edge Coloring

 $O(\Delta)$ -Edge Coloring

$O(\text{poly} \log \Delta + \log^* n)$

LOCAL model

$O(\text{poly} \log \Delta + \log^* n)$

CONGEST model

Our results

(degree + 1)-List **Edge Coloring**

 $(2\Delta - 1)$ -Edge Coloring

 $(8 + \varepsilon)\Delta$ -Edge Coloring

$O(\log^7 C \cdot \log^5 \Delta + \log^* n)$

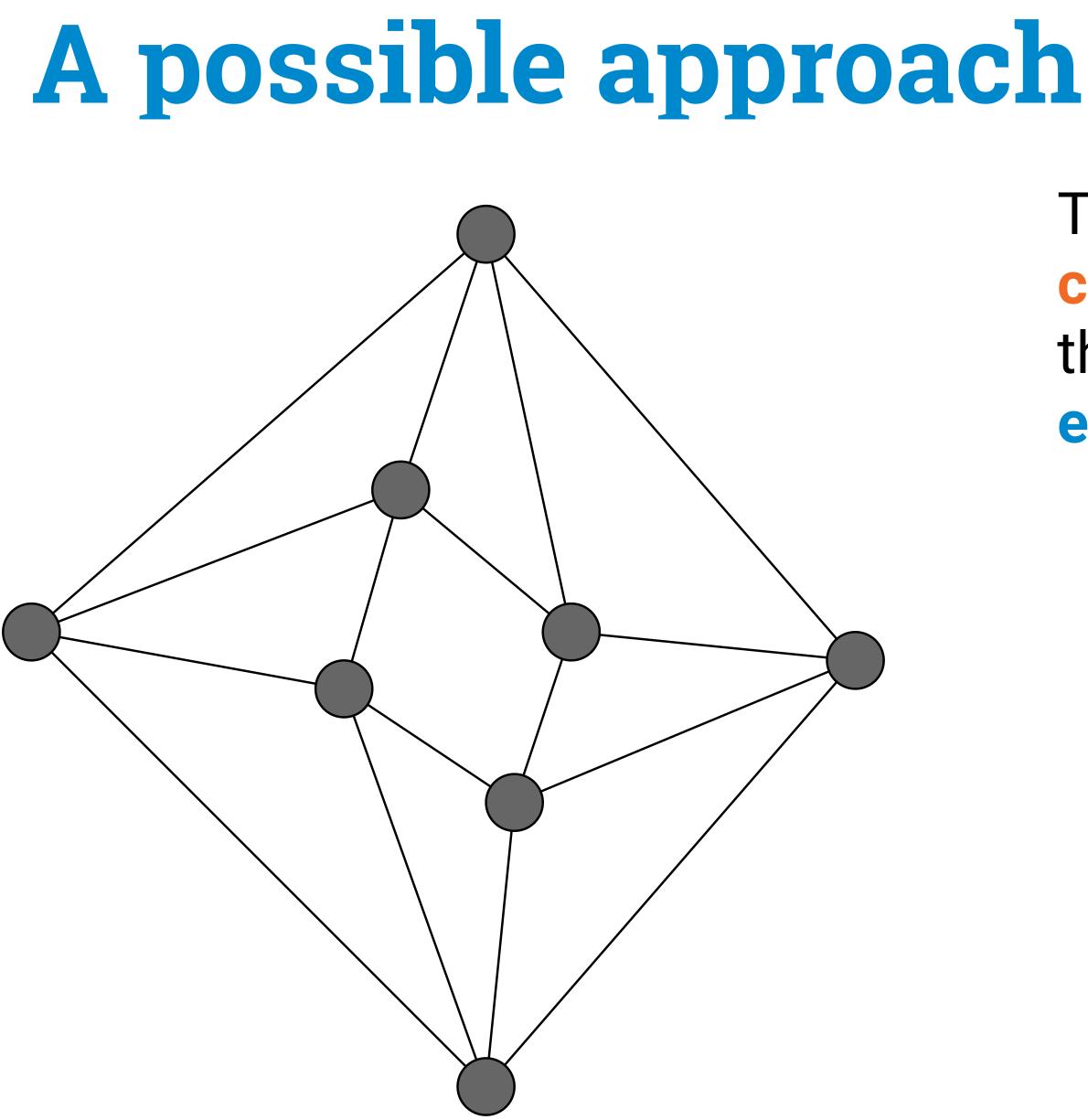
LOCAL model

$O(\log^{12} \Delta + \log^* n)$

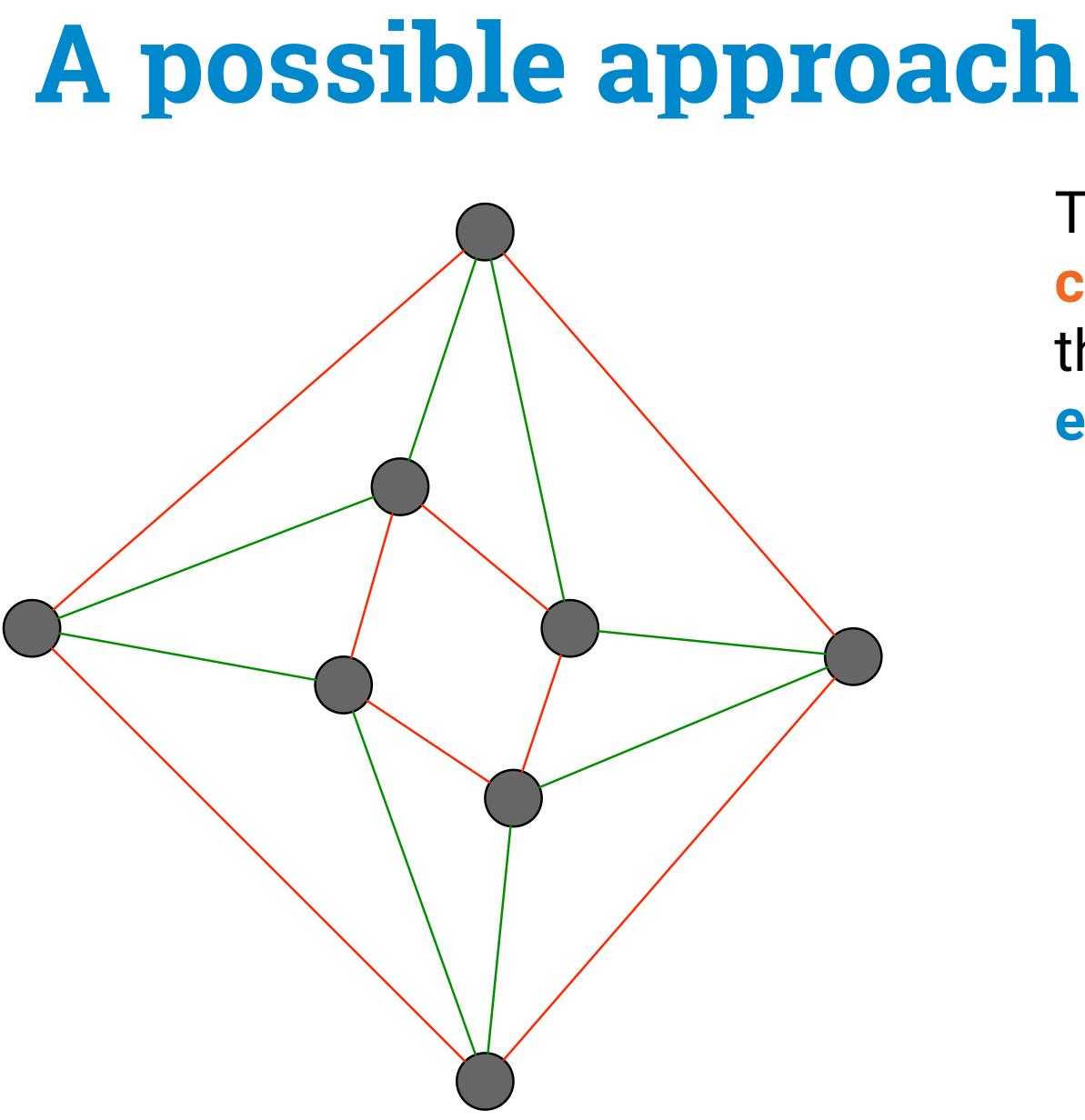
LOCAL model

CONGEST model

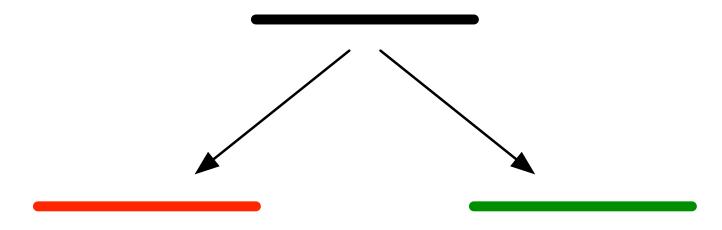
 $O\left(\frac{\log^{12}\Delta}{\varepsilon^6} + \log^* n\right)$

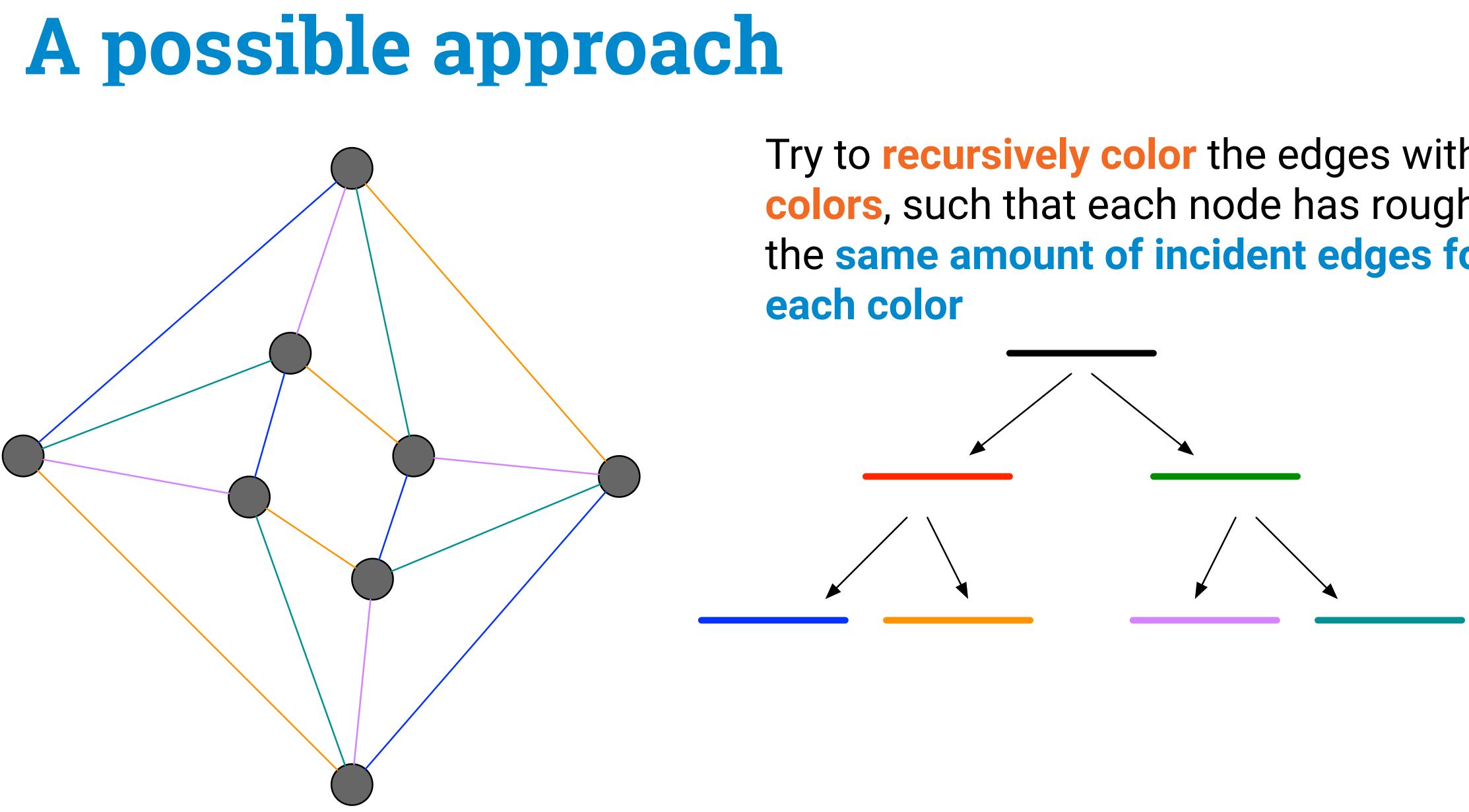


Try to recursively color the edges with 2 colors, such that each node has roughly the same amount of incident edges for each color



Try to recursively color the edges with 2 colors, such that each node has roughly the same amount of incident edges for each color

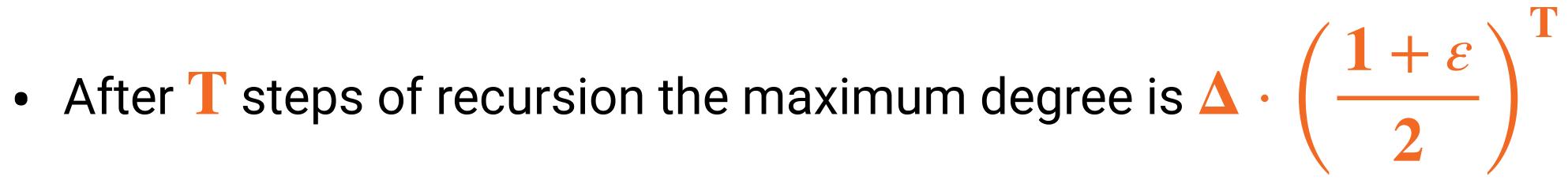




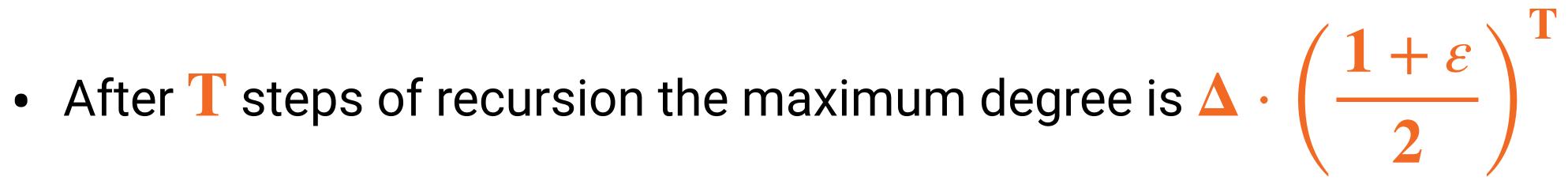
Try to recursively color the edges with 2 colors, such that each node has roughly the same amount of incident edges for

Recurse on each subgraph.

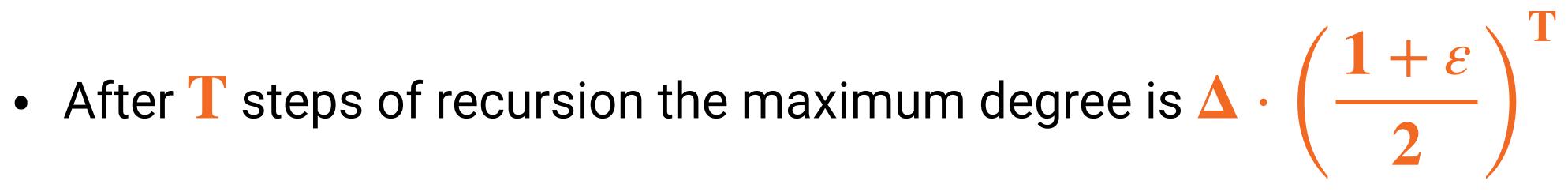
- **Recurse** on each subgraph.



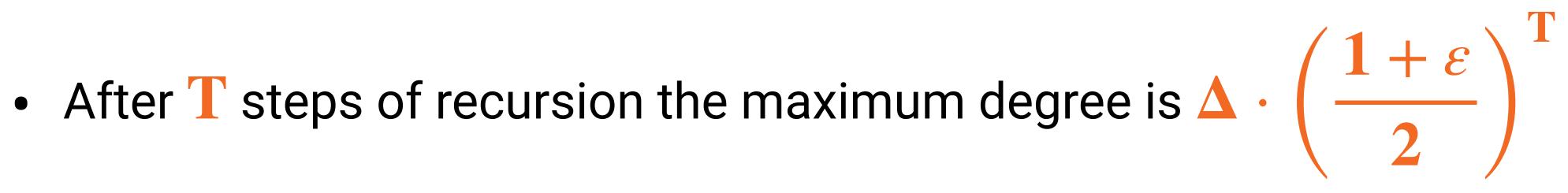
- **Recurse** on each subgraph.
- Let us fix $T = \log \Delta$ and $\varepsilon = 1/\log \Delta$



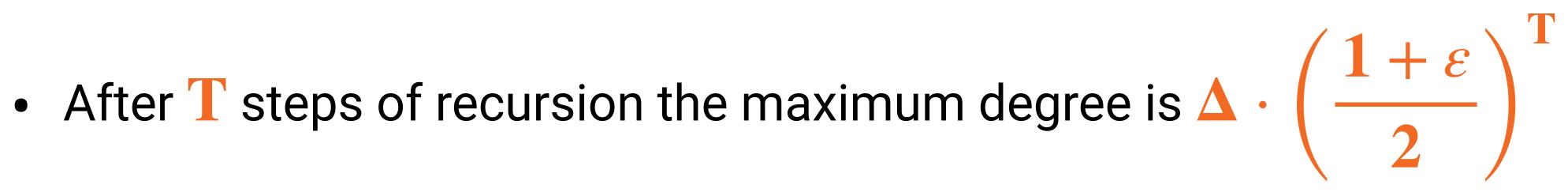
- **Recurse** on each subgraph.
- Let us fix $T = \log \Delta$ and $\varepsilon = 1/\log \Delta$
- After T steps each subgraph has constant maximum degree



- **Recurse** on each subgraph.
- Let us fix $T = \log \Delta$ and $\varepsilon = 1/\log \Delta$
- After T steps each subgraph has constant maximum degree
- The number of colors is $2^T \cdot O(1) = O(\Delta)$

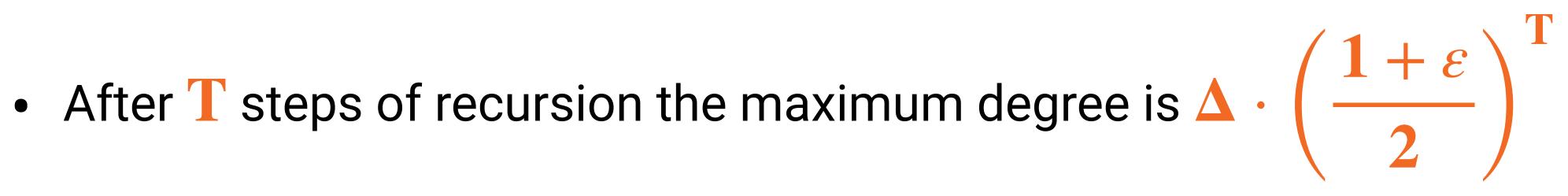


- **Recurse** on each subgraph.
- Let us fix $T = \log \Delta$ and $\varepsilon = 1/\log \Delta$
- After T steps each subgraph has constant maximum degree
- The number of colors is $2^T \cdot O(1) = O(\Delta)$
- **Running time:** $\log \Delta \cdot T_{balanced_2_col} + T_{final}$



- **Recurse** on each subgraph.
- Let us fix $T = \log \Delta$ and $\varepsilon = 1/\log \Delta$
- After T steps each subgraph has constant maximum degree
- The number of colors is $2^T \cdot O(1) = O(\Delta)$
- **Running time:** $\log \Delta \cdot T_{balanced_2_col} + T_{final}$

• Start from a graph of maximum degree Δ , 2-color the edges such that the graph induced by each color has maximum degree roughly $\Delta/2$,

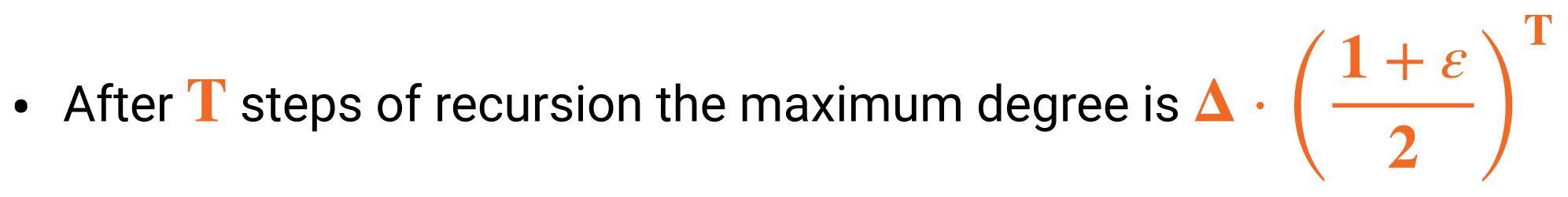


Can be done in just $O(\log^* n)$

- **Recurse** on each subgraph.
- Let us fix $T = \log \Delta$ and $\varepsilon = 1/\log \Delta$
- After T steps each subgraph has constant maximum degree
- The number of colors is $2^T \cdot O(1) = O(\Delta)$
- **Running time:** $\log \Delta \cdot T_{balanced_2_col} + T_{final}$

This requires too much!

• Start from a graph of maximum degree Δ , 2-color the edges such that the graph induced by each color has maximum degree roughly $\Delta/2$,



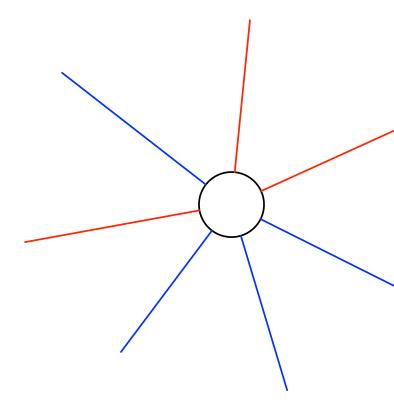
Can be done in just $O(\log^* n)$

A possible approach: the issue

 d-node-defective 2-edge-coloring: color the edges with 2 colors such that each node has at most d incident edges of the same color.

This is **hard**, even for $d \leq \Delta - 1$.

It requires $\Omega(\log n)$ rounds!



A different subroutine

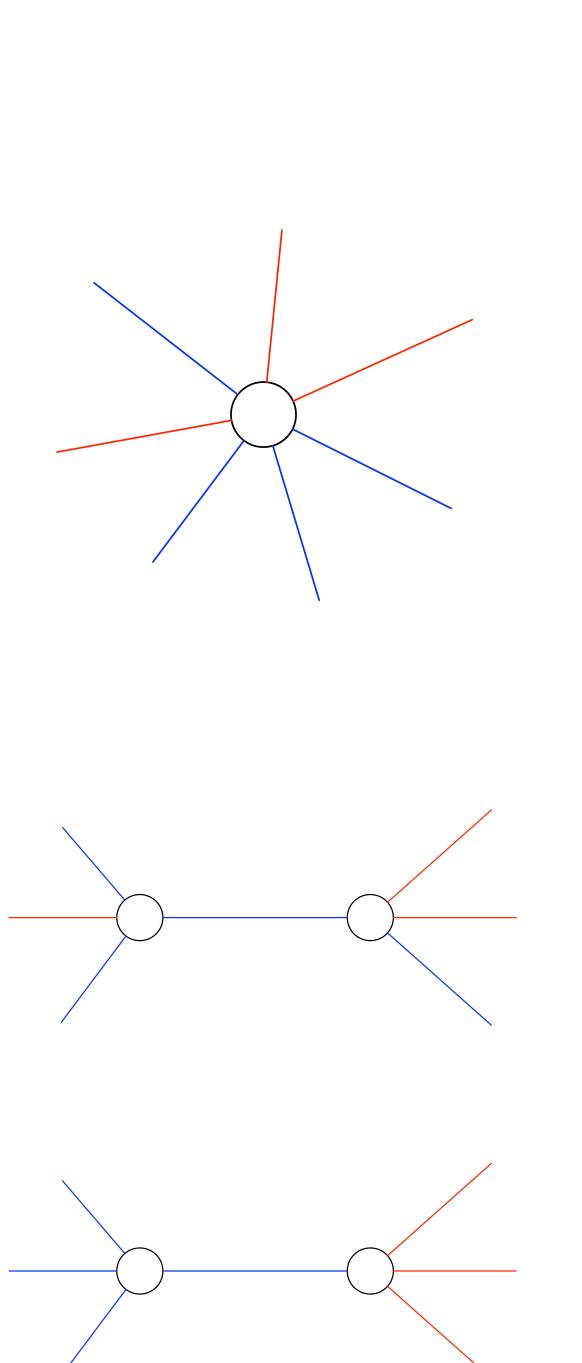
 d-node-defective 2-edge-coloring: color the edges with 2 colors such that each node has at most d incident edges of the same color.

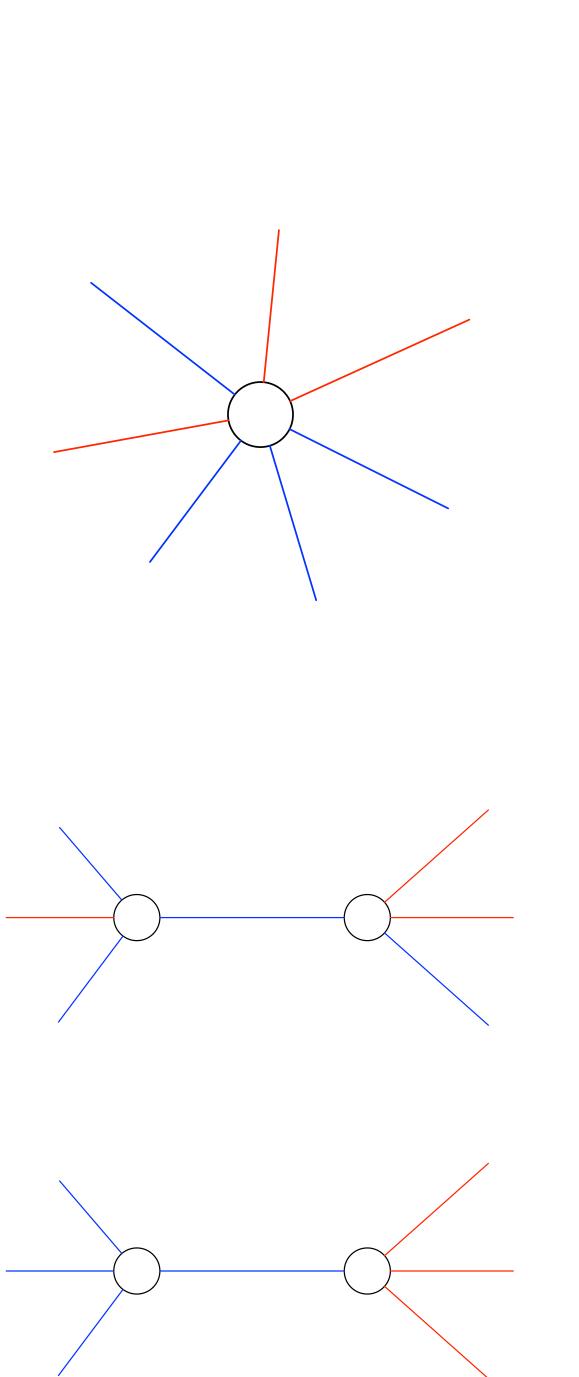
This is **hard**, even for $d \leq \Delta - 1$.

It requires $\Omega(\log n)$ rounds!

 d-edge-defective 2-edge-coloring: color the edges with 2 colors such that each edge has at most d incident edges of its color.

This is the problem that we tried to solve, for $d \leq (1 + \varepsilon) \Delta$





Main Ingredient

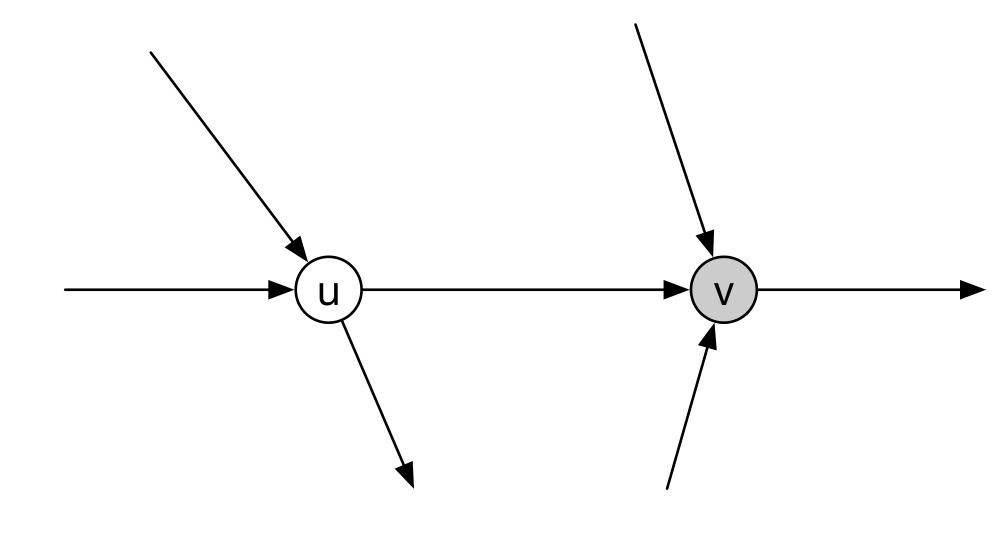
d-edge-defective **2**-edge-coloring:

color the edges with 2 colors such that each edge has at most d incident edges of its color.

For $d \leq (1 + \varepsilon)\Delta$, the problem can be solved in $O(\operatorname{poly}(1/\varepsilon, \log \Delta))$ time!

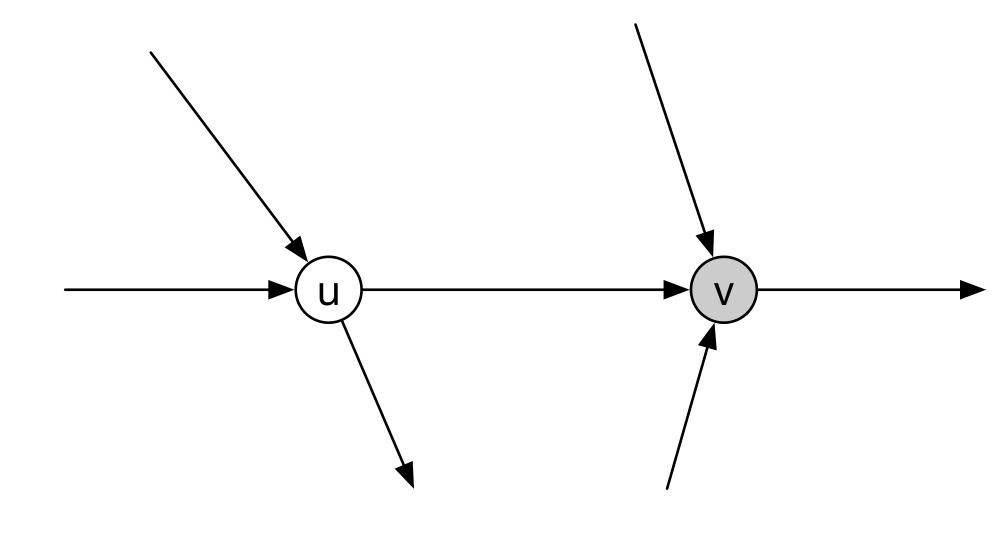
(for list coloring, we need a bit more)

 $\deg_{in}(v) \le \deg_{in}(u) + 1$



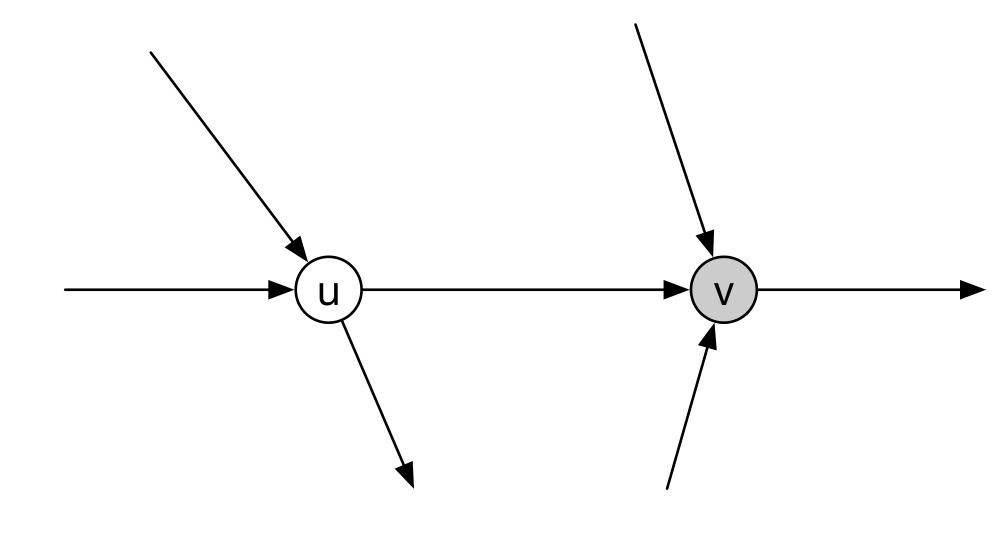
• Orient the edges of a graph such that, for each edge (u, v) oriented from u to v, it holds that

 $\deg_{in}(v) \le \deg_{in}(u) + 1$

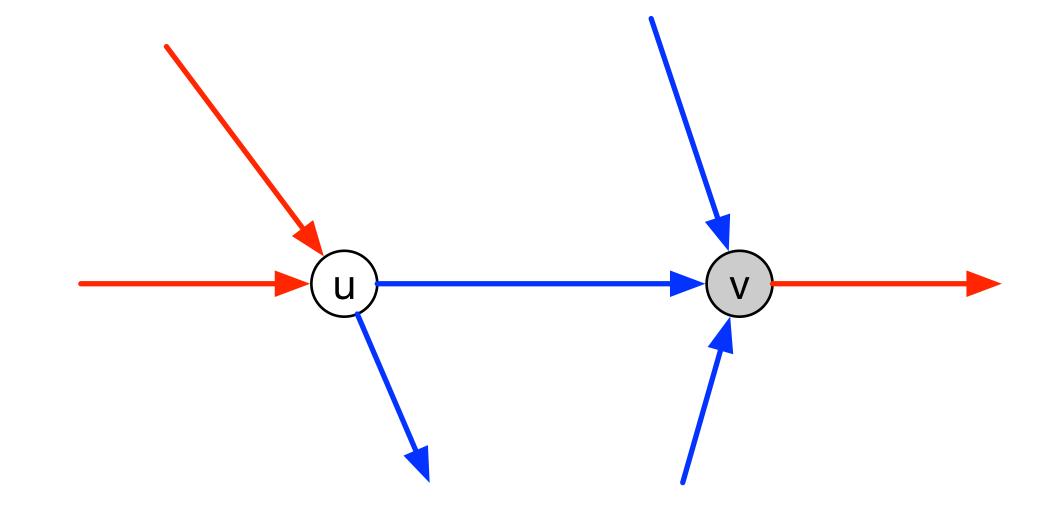


• Orient the edges of a graph such that, for each edge (u, v) oriented from u to v, it holds that

 $\deg_{in}(v) \le \deg_{in}(u) + 1$



• Orient the edges of a graph such that, for each edge (u, v) oriented from u to v, it holds that



• Orient the edges of a graph such that, for each edge (u, v) oriented from u to v, it holds that $\deg_{in}(v) \le \deg_{in}(u) + 1$

Efficient Load-Balancing through Distributed Token Dropping [Brandt, Keller, Rybicki, Suomela, Uitto 2021]

This problem can be solved in $O(\Delta^4)$ rounds!

Issues

- Stable orientation solves "balanced" edge 2-coloring, but:
 - The running time is $O(\Delta^4)$, we want $O(\log^c \Delta)$
 - We can turn a stable orientation into a edge 2-coloring only if a 2vertex coloring is given, we do not have that
 - The conversion only works on regular graphs, we do not have that
 - The recursion schema solves O(Δ)-edge coloring, not (2Δ 1)
 -edge coloring. For a better result, we need to solve a harder variant (list coloring)

• Orient the edges of a graph such that, for each edge (u, v) oriented from u to v, it holds that $\deg_{in}(v) \le \deg_{in}(u) + k$

- Orient the edges of a graph such that, for each edge (u, v) oriented from u to v, it holds that $\deg_{in}(v) \le \deg_{in}(u) + k$
- This problem can be solved in $O(\Delta^5/k^5)$ rounds!

- Orient the edges of a graph such that, for each edge (u, v) oriented from u to v, it holds that $\deg_{in}(v) \le \deg_{in}(u) + k$
- This problem can be solved in $O(\Delta^5/k^5)$ rounds!
- For $k = \frac{\Delta}{\log \Delta}$, this gives an $O(\log^5 \Delta)$ round algorithm!

Open questions: edge coloring

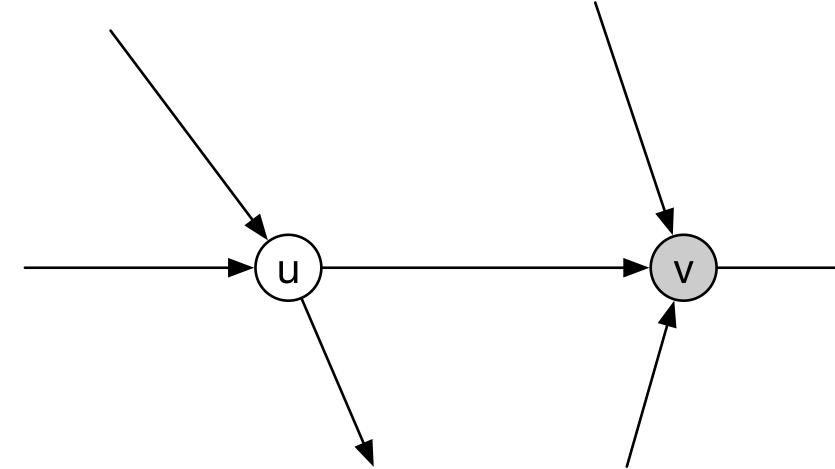
- We can solve $(2\Delta 1)$ -edge coloring in $O(\log^{12}\Delta + \log^* n)$ rounds Can we improve the exponent? We know a faster algorithm, but only for
- $O(\Delta)$ -edge coloring
- Can we solve vertex coloring in subpoly(Δ)?
- Can we prove a non-trivial lower bound for solving $(2\Delta 1)$ -edge coloring?
 - Can we show that it cannot be solved in $o(\log \Delta) + O(\log * n)$?

Open questions

oriented from u to v, it holds that $\deg_{in}(v) \leq \deg_{in}(u) + 1$

- This problem can be solved in $O(\Delta^4)$ rounds [Brandt, Keller, Rybicki, Suomela, Uitto 2021]
- Can we do better?

Stable Orientation: Orient the edges of a graph such that, for each edge (u, v)



Thank you!