
Distributed Edge Coloring in
Time Polylogarithmic in Δ
Alkida Balliu 1, Sebastian Brandt 2, Fabian Kuhn 3, Dennis Olivetti 1

1 Gran Sasso Science Institute
2 CISPA Helmholtz Center for Information Security
3 University of Freiburg

LOCAL model
• Undirected simple graph G = (V, E) of n

nodes and maximum degree Δ

• Each node has a unique ID

• Synchronous message passing model

• Unbounded computation

• Unbounded bandwidth

22

24

6

15

16

36

4

1

10

17

14

40

23

2

19

7

27

31

33

26

42

529

21

38

25

3

8
12

13

20

18

34

35

30

28 32

9 44
41

11

CONGEST model
• Undirected simple graph G = (V, E) of n

nodes and maximum degree Δ

• Each node has a unique ID

• Synchronous message passing model

• Unbounded computation

• O(log n)-bit messages

22

24

6

15

16

36

4

1

10

17

14

40

23

2

19

7

27

31

33

26

42

529

21

38

25

3

8
12

13

20

18

34

35

30

28 32

9 44
41

11

(2 - 1)-Edge ColoringΔ

Four classical problems

Maximal
independent set

(Δ + 1)-vertex
coloring

(2Δ - 1)-edge
coloring

Maximal
matching

Four classical problems

Maximal
independent set

(Δ + 1)-vertex
coloring

(2Δ - 1)-edge
coloring

Maximal
matching

These problems can be solved in rounds [Rozhon, Ghaffari ’20]poly log n

Four classical problems

Maximal
independent set

(Δ + 1)-vertex
coloring

(2Δ - 1)-edge
coloring

Maximal
matching

These problems can be solved in rounds [Rozhon, Ghaffari ’20]poly log n

These problems can be solved in rounds [Faour, Ghaffari, Grunau, Kuhn, Rozhon '23]O(log2 Δ log n)

Four classical problems

Maximal
independent set

(Δ + 1)-vertex
coloring

(2Δ - 1)-edge
coloring

Maximal
matching

These problems can be solved in rounds [Rozhon, Ghaffari ’20]poly log n

These problems can be solved in rounds [Faour, Ghaffari, Grunau, Kuhn, Rozhon '23]O(log2 Δ log n)

These problems require rounds [Linial ’87]Ω(log* n)

Four classical problems

Maximal
independent set

(Δ + 1)-vertex
coloring

(2Δ - 1)-edge
coloring

Maximal
matching

These problems can be solved in rounds [Rozhon, Ghaffari ’20]poly log n

These problems can be solved in rounds [Faour, Ghaffari, Grunau, Kuhn, Rozhon '23]O(log2 Δ log n)

These problems require rounds [Linial ’87]Ω(log* n)

Big question: f(Δ) + O(log* n)

Four classical problems

[Panconesi, Rizzi '01]
O(Δ + log* n)

[BBHORS '19]
Ω(min{Δ, logΔ n})Maximal Matching

Four classical problems

[Barenboim, Elkin, Kuhn '09]
O(Δ + log* n)

[BBHORS '19] [BBKO '22]
Ω(min{Δ, logΔ n})Maximal

Independent Set

[Panconesi, Rizzi '01]
O(Δ + log* n)

[BBHORS '19]
Ω(min{Δ, logΔ n})Maximal Matching

Four classical problems

[Barenboim, Elkin, Kuhn '09]
O(Δ + log* n)

[BBHORS '19] [BBKO '22]
Ω(min{Δ, logΔ n})Maximal

Independent Set

[Panconesi, Rizzi '01]
O(Δ + log* n)

[BBHORS '19]
Ω(min{Δ, logΔ n})Maximal Matching

[FHK '16] [BEG '18] [MT '20]
O(Δ log Δ + log* n)-Vertex

Coloring
(Δ + 1)

Four classical problems

[Barenboim, Elkin, Kuhn '09]
O(Δ + log* n)

[BBHORS '19] [BBKO '22]
Ω(min{Δ, logΔ n})Maximal

Independent Set

[Panconesi, Rizzi '01]
O(Δ + log* n)

[BBHORS '19]
Ω(min{Δ, logΔ n})Maximal Matching

[FHK '16] [BEG '18] [MT '20]
O(Δ log Δ + log* n)-Vertex

Coloring
(Δ + 1)

[Balliu, Kuhn, Olivetti '20]
(log Δ)O(log log Δ) + O(log* n)-Edge

Coloring
(2Δ − 1)

Four classical problems

[Barenboim, Elkin, Kuhn '09]
O(Δ + log* n)

[BBHORS '19] [BBKO '22]
Ω(min{Δ, logΔ n})Maximal

Independent Set

[Panconesi, Rizzi '01]
O(Δ + log* n)

[BBHORS '19]
Ω(min{Δ, logΔ n})Maximal Matching

[FHK '16] [BEG '18] [MT '20]
O(Δ log Δ + log* n)-Vertex

Coloring
(Δ + 1)

[Balliu, Kuhn, Olivetti '20]
(log Δ)O(log log Δ) + O(log* n)-Edge

Coloring
(2Δ − 1)!

Our results

 O(poly log Δ + log* n)-Edge
Coloring

(2Δ − 1) LOCAL
model

 O(poly log Δ + log* n)-Edge
Coloring

O(Δ) CONGEST
model

Our results

 O(log7 C ⋅ log5 Δ + log* n)-List
Edge Coloring

(degree + 1) LOCAL
model

 O (log12 Δ
ε6

+ log* n)
-Edge

Coloring
(8 + ε)Δ CONGEST

model

 O(log12 Δ + log* n)-Edge
Coloring

(2Δ − 1) LOCAL
model

A possible approach
Try to recursively color the edges with 2
colors, such that each node has roughly
the same amount of incident edges for
each color

A possible approach
Try to recursively color the edges with 2
colors, such that each node has roughly
the same amount of incident edges for
each color

A possible approach
Try to recursively color the edges with 2
colors, such that each node has roughly
the same amount of incident edges for
each color

A possible approach

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

A possible approach

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

• After steps of recursion the maximum degree is T Δ ⋅ (1 + ε
2)

T

A possible approach

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

• After steps of recursion the maximum degree is T Δ ⋅ (1 + ε
2)

T

• Let us fix and T = log Δ ε = 1/log Δ

A possible approach

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

• After steps of recursion the maximum degree is T Δ ⋅ (1 + ε
2)

T

• Let us fix and T = log Δ ε = 1/log Δ
• After steps each subgraph has constant maximum degreeT

A possible approach

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

• After steps of recursion the maximum degree is T Δ ⋅ (1 + ε
2)

T

• Let us fix and T = log Δ ε = 1/log Δ
• After steps each subgraph has constant maximum degreeT
• The number of colors is 2T ⋅ O(1) = O(Δ)

A possible approach

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

• After steps of recursion the maximum degree is T Δ ⋅ (1 + ε
2)

T

• Let us fix and T = log Δ ε = 1/log Δ
• After steps each subgraph has constant maximum degreeT
• The number of colors is 2T ⋅ O(1) = O(Δ)
• Running time: log Δ ⋅ Tbalanced_2_col + Tfinal

A possible approach

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

• After steps of recursion the maximum degree is T Δ ⋅ (1 + ε
2)

T

• Let us fix and T = log Δ ε = 1/log Δ
• After steps each subgraph has constant maximum degreeT
• The number of colors is 2T ⋅ O(1) = O(Δ)
• Running time: log Δ ⋅ Tbalanced_2_col + Tfinal

A possible approach

Can be done in just O(log* n)

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

• After steps of recursion the maximum degree is T Δ ⋅ (1 + ε
2)

T

• Let us fix and T = log Δ ε = 1/log Δ
• After steps each subgraph has constant maximum degreeT
• The number of colors is 2T ⋅ O(1) = O(Δ)
• Running time: log Δ ⋅ Tbalanced_2_col + Tfinal

A possible approach

Can be done in just O(log* n)This requires too much!

• d-node-defective 2-edge-coloring: color the edges with
2 colors such that each node has at most d incident
edges of the same color.

This is hard, even for .

It requires rounds!

• d-edge-defective 2-edge-coloring: color the edges with
2 colors such that each edge has at most d incident
edges of its color.

• This is the problem that we tried to solve, for

d ≤ Δ − 1
Ω(log n)

d ≤ (1 + ε)Δ

A possible approach: the issue

• d-node-defective 2-edge-coloring: color the edges with
2 colors such that each node has at most d incident
edges of the same color.

This is hard, even for .

It requires rounds!

• d-edge-defective 2-edge-coloring: color the edges with
2 colors such that each edge has at most d incident
edges of its color.

This is the problem that we tried to solve, for

d ≤ Δ − 1
Ω(log n)

d ≤ (1 + ε)Δ

A different subroutine

d-edge-defective 2-edge-coloring:

color the edges with 2 colors such that each edge has
at most d incident edges of its color.

For , the problem can be solved in
 time!

(for list coloring, we need a bit more)

d ≤ (1 + ε)Δ
O(poly(1/ϵ, log Δ))

Main Ingredient

• Orient the edges of a graph such that, for each edge oriented from to , it holds that (u, v) u v
degin(v) ≤ degin(u) + 1

u v

Stable Orientation

• Orient the edges of a graph such that, for each edge oriented from to , it holds that (u, v) u v
degin(v) ≤ degin(u) + 1

u v

Stable Orientation

• Orient the edges of a graph such that, for each edge oriented from to , it holds that (u, v) u v
degin(v) ≤ degin(u) + 1

u vu v

Stable Orientation

• Orient the edges of a graph such that, for each edge oriented from
 to , it holds that

Efficient Load-Balancing through Distributed Token Dropping

[Brandt, Keller, Rybicki, Suomela, Uitto 2021]

This problem can be solved in rounds!

(u, v)
u v degin(v) ≤ degin(u) + 1

O(Δ4)

Stable Orientation

• Stable orientation solves "balanced" edge 2-coloring, but:

• The running time is , we want

• We can turn a stable orientation into a edge 2-coloring only if a 2-
vertex coloring is given, we do not have that

• The conversion only works on regular graphs, we do not have that

• The recursion schema solves -edge coloring, not
-edge coloring. For a better result, we need to solve a harder variant
(list coloring)

O(Δ4) O(logc Δ)

O(Δ) (2Δ − 1)

Issues

Relaxed Stable Orientation

• Orient the edges of a graph such that, for each edge oriented
from to , it holds that

(u, v)
u v degin(v) ≤ degin(u) + k

Relaxed Stable Orientation

• Orient the edges of a graph such that, for each edge oriented
from to , it holds that

(u, v)
u v degin(v) ≤ degin(u) + k

• This problem can be solved in rounds!O(Δ5/k5)

Relaxed Stable Orientation

• Orient the edges of a graph such that, for each edge oriented
from to , it holds that

(u, v)
u v degin(v) ≤ degin(u) + k

• This problem can be solved in rounds!O(Δ5/k5)

• For , this gives an round algorithm!k =
Δ

log Δ
O(log5 Δ)

Relaxed Stable Orientation

Open questions: edge coloring

• We can solve -edge coloring in rounds

‣ Can we improve the exponent? We know a faster algorithm, but only for
-edge coloring

• Can we solve vertex coloring in subpoly(Δ)?

• Can we prove a non-trivial lower bound for solving (2Δ - 1)-edge coloring?

‣ Can we show that it cannot be solved in o(log Δ) + O(log* n)?

(2Δ − 1) O(log12 Δ + log* n)

O(Δ)

Open questions

u v

Stable Orientation: Orient the edges of a graph such that, for each edge
oriented from to , it holds that

• This problem can be solved in rounds
[Brandt, Keller, Rybicki, Suomela, Uitto 2021]

• Can we do better?

(u, v)
u v degin(v) ≤ degin(u) + 1

O(Δ4)

Thank you!

