Distributed Edge Coloring 1in
Time Polylogarithmic in A

Alkida Balliu 7, Sebastian Brandt 2, Fabian Kuhn 3, Dennis Olivetti

1 Gran Sasso Science Institute
2 CISPA Helmholtz Center for Information Security
3 University of Freiburg

LOCAL model

» Undirected simple graph G = (V, E) of n
nodes and maximum degree /A

* Each node has a unique 1D
* Synchronous message passing model

* Unbounded computation

e Unbounded bandwidth

CONGEST model

» Undirected simple graph G = (V, E) of n
nodes and maximum degree /A

* Each node has a unique 1D
* Synchronous message passing model
* Unbounded computation

* O(log n)-bit messages

(2A - 1)-Edge Coloring

b
/
\

Four classical problems

Maximal ¢ | (A + 1)-vertex
independent set coloring

N\ N\

Maximal (2A - 1)-edge
matching coloring

Four classical problems

Maximal ¢ | (A + 1)-vertex
independent set coloring

N\ N\

Maximal (2A - 1)-edge
matching coloring

These problems can be solved in poly log 7 rounds [Rozhon, Ghaffari "20]

Four classical problems

Maximal ¢ | (A + 1)-vertex
independent set coloring
A A
Maximal (2A - 1)-edge
matching coloring

These problems can be solved in poly log 7 rounds [Rozhon, Ghaffari "20]

These problems can be solved in O(log” A log 1) rounds [Faour, Ghaffari, Grunau, Kuhn, Rozhon 23]

Four classical problems

Maximal ¢ | (A + 1)-vertex
independent set coloring
A A
Maximal (2A - 1)-edge
matching coloring

These problems can be solved in poly log 7 rounds [Rozhon, Ghaffari "20]
These problems can be solved in O(log” A log 1) rounds [Faour, Ghaffari, Grunau, Kuhn, Rozhon 23]

These problems require 2(log™ 1) rounds [Linial '87]

Four classical problems

Maximal ¢ | (A + 1)-vertex
independent set coloring
A A
Maximal (2A - 1)-edge
matching coloring

These problems can be solved in poly log 7 rounds [Rozhon, Ghaffari "20]
These problems can be solved in O(log” A log 1) rounds [Faour, Ghaffari, Grunau, Kuhn, Rozhon 23]

These problems require 2(log™ 1) rounds [Linial '87]

Big question: f(A) + O(log™ n)

Four classical problems

Maximal Matching O(A + log* n) Q(min{A, log, })
[Panconesi, Rizzi '01]} IBBHORS '19]

Four classical problems

Maximal Matching O(A + log* n)

[Panconesi, Rizzi '01]

Maximal O(A + lgg* n)
Independent Set [Barenboim, Elkin, Kuhn '09]

Q(min{A,log, n})

[IBBHORS '19]

Q(min{ A, log, n})

[BBHORS "19] [BBKO '22]

Maximal Matching

Maximal
Independent Set

(A + 1)-Vertex
Coloring

Four classical problems

O(A + log™* n)

[Panconesi, Rizzi '01]

O(A + log™* n)

[Barenboim, Elkin, Kuhn '09]

O(/Alog A + log* n)

[FHK '16] [BEG 18] [MT '20]

Q(min{A,log, n})

[IBBHORS '19]

Q(min{ A, log, n})

[BBHORS "19] [BBKO '22]

Four classical problems

Maximal Matching O(A + log* n) Q(min{A,log, n})
[Panconesi, Rizzi '01] IBBHORS '19]

Maximal O(A + log* n) Q(min{A, log, n})
Independent Set [Barenboim, Elkin, Kuhn '09] [BBHORS '19] [BBKO '22]
(A + 1)-Vertex O(y/Alog A +log*n)

(2A — 1)-Edge (log A)CUeglogd) 1 O(log* n)

Coloring [Balliu, Kuhn, Olivetti '20]

Four classical problems

Maximal Matching O(A + log* n) Q(min{A,log, n})
[Panconesi, Rizzi '01] IBBHORS '19]

Maximal O(A + log* n) Q(min{A, log, n})
Independent Set [Barenboim, Elkin, Kuhn '09] [BBHORS '19] [BBKO '22]
(A + 1)-Vertex O(y/Alog A +log*n)

(2A — 1)-Edge (log A)CUeglogd) 1 O(log* n)

- Coloring [Balliu, Kuhn, Olivetti '20]

Our results

(2A — 1)-Edge

Coloring

O(A)-Edge

Coloring

O(poly log A + log™ n)

O(poly log A + log™ n)

LOCAL
mode]

CONGEST
model

Our results

(degree + 1)-List O(log’ C - log’ A + log* n) | OCAL
Edge Coloring model

(2A — 1)-Edge O(log'? A + log* n) LOCAL
Coloring model

(8 + £)A-Edge (log12 A) CONGEST
0, + log™ n

Coloring 6 model

A possible approach

Try to recursively color the edges with 2
colors, such that each node has roughly
the same amount of incident edges for
each color

A possible approach

Try to recursively color the edges with 2
colors, such that each node has roughly
the same amount of incident edges for
each color

s

A possible approach

Try to recursively color the edges with 2
colors, such that each node has roughly
the same amount of incident edges for
each color

s

A possible approach

A possible approach

» Start from a graph of maximum degree A, 2-color the edges such that
the graph induced by each color has maximum degree roughly A/2,
Recurse on each subgraph.

A possible approach

» Start from a graph of maximum degree A, 2-color the edges such that
the graph induced by each color has maximum degree roughly A/2,
Recurse on each subgraph.

| | | 1+e)\
o After 1" steps of recursion the maximum degree is A - 5

A possible approach

» Start from a graph of maximum degree A, 2-color the edges such that
the graph induced by each color has maximum degree roughly A/2,
Recurse on each subgraph.

| | | 1+e)\
o After 1" steps of recursion the maximum degree is A - 5

+ Letusfixl =logAande = 1/log A

A possible approach

» Start from a graph of maximum degree A, 2-color the edges such that
the graph induced by each color has maximum degree roughly A/2,
Recurse on each subgraph.

| | | 1+e)\
o After 1" steps of recursion the maximum degree is A - 5

+ Letusfixl =logAande = 1/log A

« After | steps each subgraph has constant maximum degree

A possible approach

» Start from a graph of maximum degree A, 2-color the edges such that

o After 1" steps of recursion the maximum degree is A - (

the graph induced by each color has maximum degree roughly A/2,

Recurse on each subgraph.

Letusfix I' = log A ande = 1/log A
After | steps each subgraph has constant maximum degree

The number of colors is 27 - O(1) = O(A)

1+ ¢
2

;

A possible approach

» Start from a graph of maximum degree A, 2-color the edges such that
the graph induced by each color has maximum degree roughly A/2,
Recurse on each subgraph.

| | | 1+e)\
o After 1" steps of recursion the maximum degree is A - 5

+ Letusfixl =logAande = 1/log A
« After | steps each subgraph has constant maximum degree

» The number of colorsis 2’ - O(1) = O(A)

» Running time: log A - Tbalanced_2_col T Tﬁnal

A possible approach

Start from a graph of maximum degree A, 2-color the edges such that
the graph induced by each color has maximum degree roughly A/2,
Recurse on each subgraph.

| | | 1+e)\
After 'I' steps of recursion the maximum degree is A - 5

Letusfix I' = log Aande = 1/log A

After | steps each subgraph has constant maximum degree
The number of colorsis 2’ - O(1) = O(A)

Running time: 102 A - T}, 1 ced 2 col T Thinal

N

Can be done in just O(log™ n)

A possible approach

Start from a graph of maximum degree A, 2-color the edges such that
the graph induced by each color has maximum degree roughly A/2,
Recurse on each subgraph.

| | | 1+e)\
After 'I' steps of recursion the maximum degree is A - 5

Letusfix I' = log Aande = 1/log A

After | steps each subgraph has constant maximum degree
The number of colorsis 2’ - O(1) = O(A)

Running time: 102 A - T}, 1 ced 2 col T Thinal

-~ N

This requires too much! Can be done in just O(log™ n)

A possible approach: the 1ssue

» d-node-defective 2-edge-coloring: color the edges with
2 colors such that each node has at most d incident
edges of the same color.

This is hard, even ford < A — 1.

It requires £2(log 77) rounds!

A different subroutine

» d-node-defective 2-edge-coloring: color the edges with
2 colors such that each node has at most d incident
edges of the same color.

This is hard, even ford < A — 1.

It requires £2(log 77) rounds!

» d-edge-defective 2-edge-coloring: color the edges with
2 colors such that each edge has at most d incident
edges of its color.

This is the problem that we tried to solve, for

d<(l+eA

N

NN

Main Ingredient

d-edge-defective 2-edge-coloring:

color the edges with 2 colors such that each edge has
at most d incident edges of its color.

Ford < (1 + &)/, the problem can be solved in
O(poly(1/e,log A)) timel

(for list coloring, we need a bit more)

NN
NN

Stable Orientation

» Orient the edges of a graph such that, for each edge (11, V) oriented from u to v, it holds that
deg;,(v) < deg;,(u) + 1

Stable Orientation

» Orient the edges of a graph such that, for each edge (11, V) oriented from u to v, it holds that
deg;,(v) < deg;,(u) + 1

Stable Orientation

» Orient the edges of a graph such that, for each edge (11, V) oriented from u to v, it holds that
deg;,(v) < deg;,(u) + 1

Stable Orientation

e Orient the edges of a graph such that, for each edge (17, v) oriented from
utov,itholds thatdeg, (v) < deg, (1) + |

Efficient Load-Balancing through Distributed Token Dropping

|[Brandt, Keller, Rybicki, Suomela, Uitto 2021]

This problem can be solved in O(A%) rounds!

Issues

» Stable orientation solves "balanced” edge 2-coloring, but:
+ The running time is O(A”), we want O(log“ A)

* We can turn a stable orientation into a edge 2-coloring only if a 2-
vertex coloring is given, we do not have that

* The conversion only works on reqular graphs, we do not have that

» The recursion schema solves O(A)-edge coloring, not (2ZA — 1)

-edge coloring. For a better result, we need to solve a harder variant
(list coloring)

Relaxed Stable Orientation

Relaxed Stable Orientation

» Orient the edges of a graph such that, for each edge (1, V) oriented
from u to v, it holds that deg. (v) < deg. (1) + £

Relaxed Stable Orientation

» Orient the edges of a graph such that, for each edge (1,) oriented
from u to v, it holds that deg. (v) < deg. (1) + £

+ This problem can be solved in O(A”/k”) rounds!

Relaxed Stable Orientation

» Orient the edges of a graph such that, for each edge (1,) oriented
from u to v, it holds that deg. (v) < deg. (1) + £

+ This problem can be solved in O(A”/k”) rounds!

A

, this gives an O(l()g5 A) round algorithm!
log A

e Fork =

Open questions: edge coloring

» We can solve (ZA — |)-edge coloring in 0(1()g12 A + log™ n) rounds

>~ Can we improve the exponent? We know a faster algorithm, but only for
((A)-edge coloring

» Can we solve vertex coloring in subpoly(A)?

» Can we prove a non-trivial lower bound for solving (2A - 1)-edge coloring?

> Can we show that it cannot be solved in o(log A) + O(log* n)?

Open questions

Stable Orientation: Orient the edges of a graph such that, for each edge (11,)
oriented from u to v, it holds that deg. (v) < deg. (1) + |

+ This problem can be solved in O(A™) rounds
|[Brandt, Keller, Rybicki, Suomela, Uitto 2021]

e Can we do better?

Thank you!

