Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion

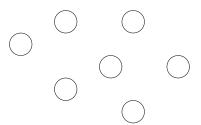
On Pareto Optimality in Social Distance Games

Alkida Balliu¹, Michele Flammini^{1,2}, **Dennis Olivetti**¹

¹Gran Sasso Science Instutute, Italy

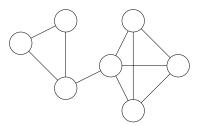
²University of L'Aquila, Italy

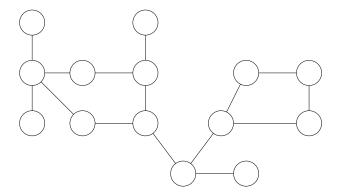
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?


Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
●		00000	00	0000	O
Goal	and Motivation				

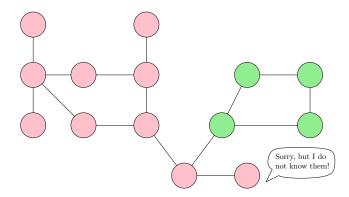
- Study the social networks from the point of view of cooperative game theory.
- Social Distance Games (SDGs): a model of interaction on social networks capturing the idea that in social networks agents prefer to maintain ties with agents who are close to them. Introduced by Brânzei and Larson.

• Study Pareto Stability in SDGs.

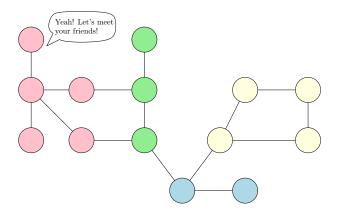




- Agents
- Relations



Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O	○●○○○	00000	00	0000	O
Coal	ition forming ga	ames			


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O	○●○○○	00000	00	0000	O
Coal	ition forming ga	ames			

・ロト・4回ト・4回ト・4回ト・4回ト

Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O	○●○○○	00000	00	0000	O
Coal	ition forming ga	ames			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Let:

- i: an agent
- C: the coalition of the agent i
- E: the set of edges

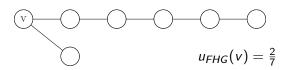
Let:

- i: an agent
- C: the coalition of the agent i
- E: the set of edges

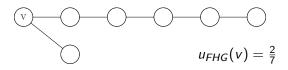
Different payoff metrics (happiness of agents):

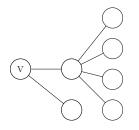
- Fractional Hedonic Games (FHGs): $\frac{1}{|C|} \sum_{j \in C, (i,j) \in E} w_{i,j}$
- Social Distance Games (SDGs): $\frac{1}{|C|} \sum_{x_j \in C \setminus \{x_i\}} \frac{1}{dist(x_i, x_j)}$

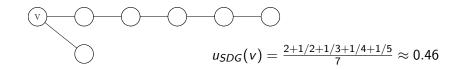
Let:


- i: an agent
- C: the coalition of the agent i
- E: the set of edges

Different payoff metrics (happiness of agents):

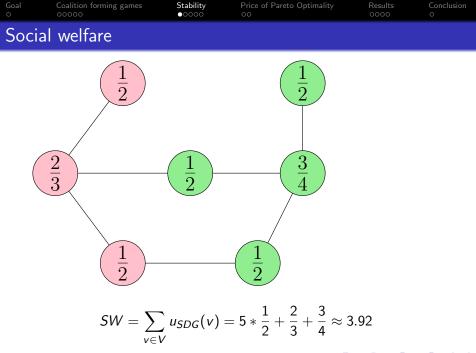

- Fractional Hedonic Games (FHGs): $\frac{1}{|C|} \sum_{i \in C, (i,j) \in E} w_{i,j}$
- Social Distance Games (SDGs): $\frac{1}{|C|} \sum_{x_j \in C \setminus \{x_i\}} \frac{1}{dist(x_i, x_j)}$
- Additively Separable Hedonic Games: $\sum_{j \in C, (i,j) \in E} w_{i,j}$
- Modified Fractional Hedonic Games: $\frac{1}{|C|-1} \sum_{j \in C, (i,j) \in E} w_{i,j}$


• . . .



 $u_{FHG}(v) = \frac{2}{7}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



$$v$$
 $u_{SDG}(v) = \frac{2+1/2+1/3+1/4+1/5}{7} \approx 0.46$

$$u_{SDG}(v) = \frac{2+4/2}{7} \approx 0.57$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O		0000	00	0000	O
Noti	ons of Stability				

Starting from a coalition and letting agents deviate and improve their utility, there are different notions of stability.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

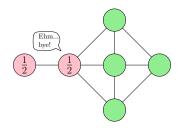
Goal O	Coalition forming games	Stability 0000	Price of Pareto Optimality	Results 0000	Conclusion O
Notio	ons of Stability				

Starting from a coalition and letting agents deviate and improve their utility, there are different notions of stability.

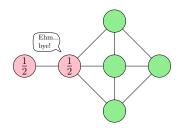
• Nash Stability: each agent is selfish and at each step one agent can deviate.

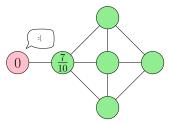
Goal O	Coalition forming games	Stability ○●○○○	Price of Pareto Optimality	Results 0000	Conclusion O
Notio	ons of Stability				

Starting from a coalition and letting agents deviate and improve their utility, there are different notions of stability.

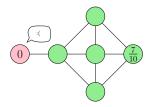

- Nash Stability: each agent is selfish and at each step one agent can deviate.
- *Core Stability*: a group of agents can deviate simultaneously to form a new coalition.

Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O		0000	00	0000	O
Noti	ons of Stability				

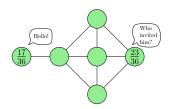

Starting from a coalition and letting agents deviate and improve their utility, there are different notions of stability.


- Nash Stability: each agent is selfish and at each step one agent can deviate.
- *Core Stability*: a group of agents can deviate simultaneously to form a new coalition.
- **Pareto Stability**: all agents can deviate simultaneously, forming any new set of coalitions, but nobody should get a lower utility.

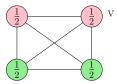
Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O		○○●○○	00	0000	O
Nash					



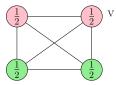
Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O		○○●○○	00	0000	O
Nash					

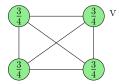

Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O		○○●○○	00	0000	O
Nash					

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?


Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O		○○●○○	00	0000	O
Nash					

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

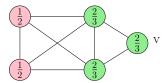

Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O		○○○●○	00	0000	0
Pare	to				


$$u_{SDG}(v) = \frac{1}{2}$$

SW = 2

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

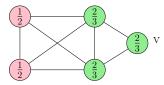
Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O		○○○●○	00	0000	O
Pare	to				

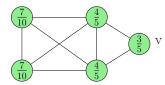


$$u_{SDG}(v) = \frac{1}{2}$$

SW = 2

$$u_{SDG}(v) = \frac{3}{4}$$
$$SW = 3$$

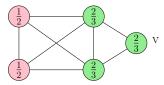

Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O		○○○○●	00	0000	O
Pare	to				


$$u_{SDG}(v) = 2/3$$

SW = 3

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

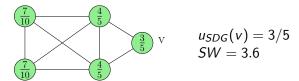
Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O		○○○○●	00	0000	O
Pare	to				


$$u_{SDG}(v) = 2/3$$

SW = 3

$$u_{SDG}(v) = 3/5$$

SW = 3.6


<□> <圖> < E> < E> E のQ@

Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O		○○○○●	00	0000	O
Pare	to				

$$u_{SDG}(v) = 2/3$$

SW = 3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Not a valid deviation! 3/5 < 2/3

A game is *Pareto Optimal* if there is no other outcome in which all players are at least as well off and some players are strictly better off.

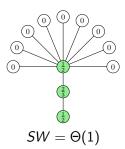
- A group of players can not deviate if the utility of some other player decreases.
- Every social welfare maximizing outcome is Pareto Optimal, thus Price of Stability is 1.

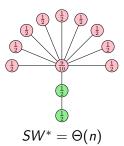
Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O		00000	○●	0000	O
Price	of Pareto Opti	mality ((PPO)		

Price of Pareto Optimality (PPO)

Ratio between the social welfare of the best solution, and the social welfare of the worst Pareto stable solution.

Let:


- PO = set of all Pareto stable partitions
- P^* = the partition maximizing the social welfare


$$PPO(G) = max_{P \in PO} rac{SW(P^*)}{SW(P)}$$

Goal	Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
O		00000	00	●○○○	O
PPO	in SDGs				

PPO in SDGs

PPO in SDGs is $\Theta(n)$

◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

Coalition forming games	Stability	Price of Pareto Optimality	Results	Conclusion
			0000	

Undirecte	d Unweighted	Weighted
General	$\Theta(n)$	$\Theta(nW)$
Δ-bounde	d $\Theta(\Delta)$	$\Omega(\Delta W),$
		$O(min\{nW, \Delta W^2\})$

Directed	Unweighted	Weighted
General	$\Theta(n)$	$\Theta(nW)$
(1,1) bounded	$\Theta(\frac{n}{\log n})$	$\Theta(\frac{nW}{W+\log n}+W)$
$(\Delta, 1)$ bounded	$\Theta(\frac{n}{\log \log_{\Delta} n})$	$\Theta(\frac{nW}{\log\log_{\Delta}n})$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Goal O	Coalition forming games	Stability 00000	Price of Pareto Optimality	Results ○○●○	Conclusion O
Find	ing a Good Par	tition			

If we start from any partition and let the agents coordinate to deviate, the PPO can be very high. We can solve the problem by fixing the initial partition!

Goal O	Coalition forming games	Stability 00000	Price of Pareto Optimality	Results ○○●○	Conclusion O		
Finding a Good Partition							

If we start from any partition and let the agents coordinate to deviate, the PPO can be very high. We can solve the problem by fixing the initial partition!

The problem of determining an optimal solution for any G is NP-hard, even when each agent has at most 6 neighbors.

But, we can find 2 types of solution in polynomial time:

• A Pareto Stable partition P such that

$$\frac{SW(P^*)}{SW(P)} \leq 2\min(\Delta, \sqrt{n})$$

• A Pareto Unstable partition such that

$$\frac{SW(P^*)}{SW(P)} \le 2$$

The second solution is *fair*: each agent achieves a utility of at least $\frac{1}{2}$. The partition could be unstable, but Pareto Stability guarantees that in case of deviations no agent can loose utility!

Goal O	Coalition forming games	Stability 00000	Price of Pareto Optimality	Results 0000	Conclusion •
Cone	clusion				

Main results:

- Pareto Stability seems a fair concept: it forbids deviations where agents can loose utility
- Price of Pareto Optimality can be as bad as $\Theta(n)$
- We can force a good outcome by carefully choosing the initial coalitions

Open problems:

• Find a *stable* partition that achieves a constant approximation of the optimum

• Close the gap of the PPO in Weighted Δ -bounded degree graphs