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General topic

Upper bounds and lower bounds for relaxed versions of vertex coloring




 Entities = nodes
e Communication link
* |nput graph = comm

LOCAL model

s = edges
unication graph




LOCAL model

» Each node has a unique identifier from 1 to poly(n)
* No bounds on the computational power of the entities
* No bounds on the bandwidth




LOCAL model

90

b du 4

Y

K5

@“ 5° e ) @‘ @'Q.O @'@‘e‘
@7 @ :Q@ T : ONNG : .

’ 71
87




LOCAL model




LOCAL model




LOCAL model

» After t rounds: knowledge of the graph up to distance t
* Focus on locality
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Locally Checkable Labelings (LCLSs)

* |Input
e Graph of constant maximum degree A
* Node labels from a constant-size set X
 Output

 Node labels from a constant-size set Y, such that each node satisfies
some local constraints

e Correctness

* A solution is globally correct if it is correct in all constant-radius
neighborhoods

[Naor and Stockmeyer, 1995]



Example: vertex k-coloring

* Output: color nodes from a palette of kK = O(1) colors

* Constraint: each node must have a different color from its neighbors

e
NS




Example: weak 2-coloring

* Output: color nodes from a palette of 2 colors

* Constraint: each node must have a different color from at least 1 neighbor

asate ey
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"Easy’ and “hard” LCLs

Fix an LCL: its deterministic distributed complexity is either O(log* n) or at
least Q(log n) [Chang et al., 2016]

* “Easy”: LCLs solvable in O(log* n) rounds

» “Hard": LCLs that require at least Q(log n) rounds



From easy to hard: edge coloring

* (2A — 1)-edge-coloring is easy

e (2A — 2)-edge-coloring is hard



From easy to hard: vertex coloring

* (A + 1)-vertex-coloring is easy

* A-vertex-coloring is hard



From easy to hard

} O Weak 2-coloring Easy
>—0 2-coloring Hard




From easy to hard

O Weak 2-coloring Easy

O Intermediate ?

>—0 2-coloring Hard




Partial coloring

* Input: graph of minimum degree d
e Output: [abel nodes from a palette of ¢ colors

» Constraint: each node v must have at least k neighbors having a different
color from v

For which values of (k, c, d) is this problem easy? For which ones is it hard?
We study this problem in trees and general graphs.



Examples of partial colorings

e 2-partial 2-coloring

o Palette of 2 colors

* 3-regular tree

* Each node v must have at least 2
neighbors having color different fromv




Examples of partial colorings

o 2-partial 2-coloring

o Palette of 2 colors

* 10-regular tree

« Each node v must have at least 2 @ (O
neighbors having color different fromv ® ®



Examples of partial colorings

» 3-partial 2-coloring

o Palette of 2 colors

* 10-regular tree

* Each node v must have at least 3 (O
neighbors having color different fromv




Examples of partial colorings

* 3-partial 3-coloring OO

o Palette of 3 colors

* 10-regular tree

* Each node v must have at least 3 (O
neighbors having color different from v ® e



Partial vs defective coloring

* Partial coloring:

* each node v must have at least k neighbors having a different color
fromyv

» Defective coloring:

* each node v must have at most k' neighbors having the same color

daS Vv
easy for some “small” k
when ¢ = perfect square
e |n d—regular graphs: [Barenboim et al., 2014]

 k-partial c-coloring = (d — k)-defective c-coloring



Weak 2-coloring and beyond

1-partial 2-coloring (weak 2-coloring) Easy O o

2-partial 2-coloring ? O C



Our results: 2-partial 2-coloring 1s hard

2-partial 2-coloring in d-regular trees requires at least Q(log n) rounds, v d = 3

« Matching O(log n) upper bound in trees [Bonamy et al., 2018]
» Larger d does not help!



Our results: 2-partial 2-coloring 1s hard

 Proof idea:

* 0o(log n)-round algorithm for 2-partial 2-coloring in
d-regular trees | :>

* 0O(7)-round algorithm for sinkless orientation in
do()-regular constant-distance-colored trees

V

* O(log* n)-round algorithm for sinkless orientation in
I
do(M)-regular trees :>

* Contradiction [Brandt et al., 2016]



Our results: k-partial 3-coloring

» k-partial 3-coloring: the degree d plays an important role
* hard for some “small” d

» easy for some “large” d



Our results: k-partial c-coloring

k-partial 3-coloring in graphs with minimum degree d = (3k — 4) is easy

k-partial k-coloring in graphs with minimum degree d = (k + 2) is easy

k-partial c-coloring in d-regular graphs, for k 2d(c — 1)/c + 1, is hard

Our algorithms are inspired by the ones for defective coloring of [Barenboim et al. 2014]



Summary

k-partial 2-coloring in graphs with minimum degree d

d:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Easy k:
Hard

No solution
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Summary

k-partial 3-coloring in graphs with minimum degree d

d:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Easy k: 1
2

Hard S
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Summary

k-partial 3-coloring in graphs with minimum degree d

d:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Easy k:
Hard

No solution

~N O O b WD P



Concrete open problem

3-partial 3-coloring in 5-reqular trees Easy ?%@
3-partial 3-coloring in 3-regular trees Hard '/i\@



Concrete open problem

3-partial 3-coloring in S-regular trees Easy

3-partial 3-coloring in 4-reqular trees? ???

3-partial 3-coloring in 3-regular trees Hard



Concrete open problem

3-partial 3-coloring in S-regular trees Easy
3-partial 3-coloring in 4-reqular trees? ???
3-partial 3-coloring in 3-regular trees Hard

Thank you!



