Locality of not-so-weak coloring

Alkida Balliu· Aalto UniversityJuho Hirvonen· Aalto UniversityChristoph Lenzen· MPIDennis Olivetti· Aalto UniversityJukka Suomela· Aalto University

Upper bounds and lower bounds for relaxed versions of vertex coloring

- Entities = **nodes**
- Communication links = edges

LOCAL model

- Each node has a unique identifier from 1 to poly(n)
- No bounds on the computational power of the entities
- No bounds on the bandwidth

from 1 to poly(*n*) for the entities

• Round 0

LOCAL model

• Round 1

LOCAL model

• Round 2

LOCAL model

- After *t* rounds: knowledge of the graph up to distance *t*
- Focus on locality

Locally Checkable Labelings (LCLs)

- Input
 - Graph of constant maximum degree Δ
 - Node labels from a **constant-size** set X
- Output
 - some local constraints
- Correctness
 - A solution is globally correct if it is correct in all constant-radius neighborhoods

Node labels from a constant-size set Y, such that each node satisfies

[Naor and Stockmeyer, 1995]

Example: vertex k-coloring

- Output: color nodes from a palette of k = O(1) colors
- Constraint: each node must have a different color from its neighbors

Example: weak 2-coloring

- Output: color nodes from a palette of 2 colors
- Constraint: each node must have a different color from at least 1 neighbor

"Easy" and "hard" LCLs

Fix an LCL: its deterministic distributed complexity is either $O(\log^* n)$ or at least $\Omega(\log n)$ [Chang et al., 2016]

- "Easy": LCLs solvable in O(log* n) rounds
- "Hard": LCLs that require at least Ω(log n) rounds

From easy to hard: edge coloring

- $(2\Delta 1)$ -edge-coloring is easy
- $(2\Delta 2)$ -edge-coloring is hard

From easy to hard: vertex coloring

- (Δ + 1)-vertex-coloring is easy
- Δ-vertex-coloring is hard

From easy to hard

Weak 2-coloring

2-coloring

From easy to hard

Weak 2-coloring Easy

Intermediate

2-coloring

?

- Input: graph of minimum degree d
- Output: label nodes from a palette of c colors
- color from v

For which values of (k, c, d) is this problem easy? For which ones is it hard? We study this problem in trees and general graphs.

Constraint: each node v must have at least k neighbors having a different

- 2-partial 2-coloring
 - Palette of 2 colors
 - **3-regular** tree
 - Each node v must have at least 2 neighbors having color different from v

- 2-partial 2-coloring
 - Palette of 2 colors
 - 10-regular tree
 - Each node v must have at least 2 neighbors having color different from v

- 3-partial 2-coloring
 - Palette of 2 colors
 - 10-regular tree
 - Each node v must have at least 3 neighbors having color different from v

- **3**-partial **3**-coloring
 - Palette of 3 colors
 - 10-regular tree
 - Each node v must have at least 3 neighbors having color different from v

Partial vs defective coloring

- Partial coloring:
 - from v
- **Defective coloring**:
 - as v

- In *d*-regular graphs:
 - k-partial c-coloring = (d k)-defective c-coloring

each node v must have at least k neighbors having a different color

each node v must have at most k' neighbors having the same color

easy for some "small" k when *c* = perfect square

[Barenboim et al., 2014]

Weak 2-coloring and beyond

1-partial 2-coloring (weak 2-coloring)

2-partial 2-coloring

7

Our results: 2-partial 2-coloring is hard

2-partial 2-coloring in *d*-regular trees requires at least $\Omega(\log n)$ rounds, $\forall d \ge 3$

- **Matching** O(log n) upper bound in trees [Bonamy et al., 2018]
- Larger d does not help!

Our results: 2-partial 2-coloring is hard

- Proof idea:
 - o(log n)-round algorithm for 2-partial 2-coloring in d-regular trees
 - O(1)-round algorithm for sinkless orientation in d^{O(1)}-regular constant-distance-colored trees
 - O(log* n)-round algorithm for sinkless orientation in d^{O(1)}-regular trees
 - Contradiction [Brandt et al., 2016]

Our results: k-partial 3-coloring

- **k**-partial **3**-coloring: the degree **d** plays an important role
 - hard for some "small" d
 - easy for some "large" d

k-partial 3-coloring in graphs with minimum degree d = (3k - 4) is easy

k-partial k-coloring in graphs with minimum degree d = (k + 2) is easy

k-partial **c**-coloring in **d**-regular graphs, for $k \ge d(c - 1)/c + 1$, is hard

Our algorithms are inspired by the ones for defective coloring of [Barenboim et al. 2014]

Our results: k-partial c-coloring

Concrete open problem

3-partial 3-coloring in 5-regular trees

3-partial 3-coloring in 3-regular trees

Easy

3-partial **3**-coloring in **5**-regular trees

3-partial **3**-coloring in **4**-regular trees?

3-partial **3**-coloring in **3**-regular trees

Concrete open problem

Easy

Concrete open problem

3-partial 3-coloring in 5-regular trees

3-partial **3**-coloring in **4**-regular trees?

3-partial **3**-coloring in **3**-regular trees

Easy

