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General topic

Upper bounds and lower bounds for relaxed versions of vertex coloring



LOCAL model
• Entities = nodes 
• Communication links = edges 
• Input graph = communication graph



LOCAL model
• Each node has a unique identifier from 1 to poly(n) 
• No bounds on the computational power of the entities 
• No bounds on the bandwidth
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LOCAL model
• Round 0
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LOCAL model
• Round 1
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LOCAL model
• Round 2
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LOCAL model
• After t rounds: knowledge of the graph up to distance t 
• Focus on locality
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Locally Checkable Labelings (LCLs)
• Input 

• Graph of constant maximum degree Δ  

• Node labels from a constant-size set X 

• Output 

• Node labels from a constant-size set Y, such that each node satisfies 
some local constraints 

• Correctness 

• A solution is globally correct if it is correct in all constant-radius 
neighborhoods

[Naor and Stockmeyer, 1995]



Example: vertex k-coloring
• Output: color nodes from a palette of k = O(1) colors  

• Constraint: each node must have a different color from its neighbors



Example: weak 2-coloring
• Output: color nodes from a palette of 2 colors  

• Constraint: each node must have a different color from at least 1 neighbor



“Easy” and “hard” LCLs

Fix an LCL: its deterministic distributed complexity is either O(log* n) or at 
least Ω(log n) [Chang et al., 2016]  

• “Easy”: LCLs solvable in O(log* n) rounds 

• “Hard”: LCLs that require at least Ω(log n) rounds



From easy to hard: edge coloring

• (2Δ — 1)-edge-coloring is easy 

• (2Δ — 2)-edge-coloring is hard



From easy to hard: vertex coloring

• (Δ + 1)-vertex-coloring is easy 

• Δ-vertex-coloring is hard



From easy to hard

Easy

Hard2-coloring

Weak 2-coloring



From easy to hard

Easy

Hard

?

2-coloring

Weak 2-coloring

Intermediate



Partial coloring

• Input: graph of minimum degree d 

• Output: label nodes from a palette of c colors 

• Constraint: each node v must have at least k neighbors having a different 
color from v 

For which values of (k, c, d) is this problem easy? For which ones is it hard? 
We study this problem in trees and general graphs.



Examples of partial colorings

• 2-partial 2-coloring 

• Palette of 2 colors 

• 3-regular tree 

• Each node v must have at least 2 
neighbors having color different from v



Examples of partial colorings
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Examples of partial colorings

• 3-partial 2-coloring 

• Palette of 2 colors 

• 10-regular tree 

• Each node v must have at least 3 
neighbors having color different from v



Examples of partial colorings

• 3-partial 3-coloring 

• Palette of 3 colors 

• 10-regular tree 

• Each node v must have at least 3 
neighbors having color different from v



Partial vs defective coloring
• Partial coloring:  

• each node v must have at least k neighbors having a different color 
from v 

• Defective coloring:  

• each node v must have at most k’ neighbors having the same color 
as v 

• In d-regular graphs: 

• k-partial c-coloring = (d — k)-defective c-coloring

easy for some “small’’ k 
when c = perfect square

[Barenboim et al., 2014]



Weak 2-coloring and beyond

Easy

?2-partial 2-coloring

1-partial 2-coloring (weak 2-coloring)



Our results: 2-partial 2-coloring is hard

2-partial 2-coloring in d-regular trees requires at least Ω(log n) rounds, ∀ d ≥ 3 

• Matching O(log n) upper bound in trees [Bonamy et al., 2018] 

• Larger d does not help!



Our results: 2-partial 2-coloring is hard

• Proof idea: 

• o(log n)-round algorithm for 2-partial 2-coloring in 
d-regular trees 

• O(1)-round algorithm for sinkless orientation in 
dO(1)-regular constant-distance-colored trees 

• O(log* n)-round algorithm for sinkless orientation in 
dO(1)-regular trees 

• Contradiction [Brandt et al., 2016]



Our results: k-partial 3-coloring

• k-partial 3-coloring: the degree d plays an important role 

• hard for some ‘’small’’ d 

• easy for some ‘’large’’ d



Our results: k-partial c-coloring

k-partial 3-coloring in graphs with minimum degree d = (3k — 4) is easy 

k-partial k-coloring in graphs with minimum degree d = (k + 2) is easy 

k-partial c-coloring in d-regular graphs, for k ≥ d(c — 1)/c + 1, is hard

Our algorithms are inspired by the ones for defective coloring of [Barenboim et al. 2014] 



Summary
k-partial 2-coloring in graphs with minimum degree d 
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Hard 

No solution
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Concrete open problem

3-partial 3-coloring in 5-regular trees
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Hard
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Concrete open problem

3-partial 3-coloring in 5-regular trees

3-partial 3-coloring in 4-regular trees?

3-partial 3-coloring in 3-regular trees

Easy

Hard

???

Thank you!


