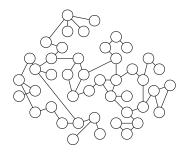
New Classes of Distributed Time Complexity

Alkida Balliu, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, **Dennis Olivetti**, and Jukka Suomela

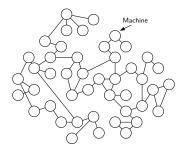
Aalto University, Finland

• Distributed network



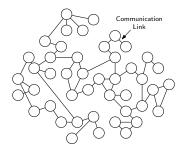
э

・ロト ・ 同ト ・ ヨト ・ ヨト



- Distributed network
- Nodes represent machines

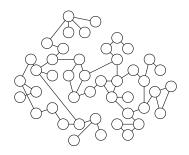
э



- Distributed network
- Nodes represent machines
- Edges represent communication links

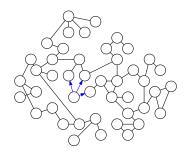
イロト イボト イヨト イヨト

э



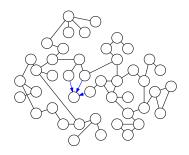
- Distributed network
- Nodes represent machines
- Edges represent communication links

• 3 >



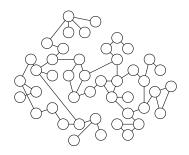
- Distributed network
- Nodes represent machines
- Edges represent communication links

• 3 >



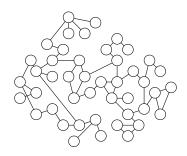
- Distributed network
- Nodes represent machines
- Edges represent communication links

• 3 >

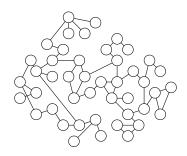


- Distributed network
- Nodes represent machines
- Edges represent communication links

• 3 >



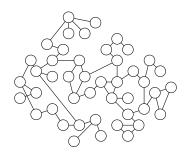
- Distributed network
- Nodes represent machines
- Edges represent communication links
- Synchronous
- Messages of arbitrary size, arbitrary computational power



- Distributed network
- Nodes represent machines
- Edges represent communication links
- Synchronous
- Messages of arbitrary size, arbitrary computational power

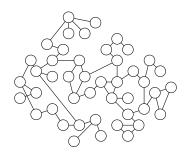
< 17 > <

Nodes have distinct IDs

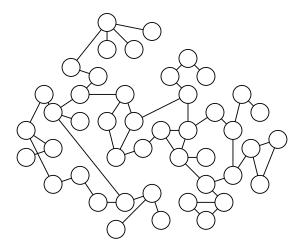


- Distributed network
- Nodes represent machines
- Edges represent communication links
- Synchronous
- Messages of arbitrary size, arbitrary computational power
- Nodes have distinct IDs
- Nodes know the size of the graph

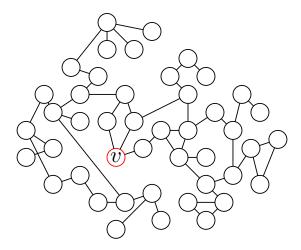
< 17 > <



- Distributed network
- Nodes represent machines
- Edges represent communication links
- Synchronous
- Messages of arbitrary size, arbitrary computational power
- Nodes have distinct IDs
- Nodes know the size of the graph
- Complexity measure: number of rounds required to solve a task



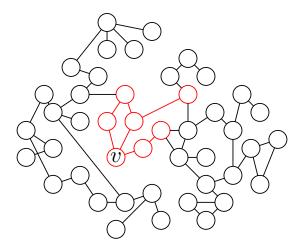
э



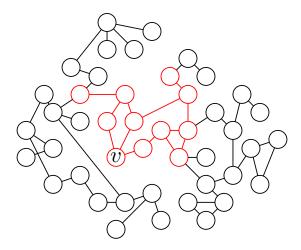
э



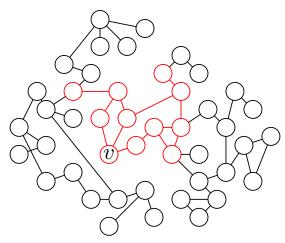
э



э



э



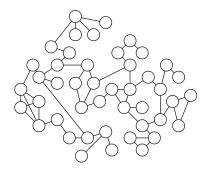
A *t*-round algorithm for the LOCAL model is a mapping from *t*-radius balls to valid outputs.

Locally Checkable Labellings

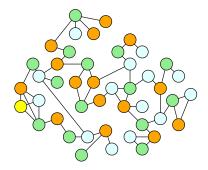
LCL Problems:

- Introduced by Naor and Stockmeyer in 1995
- Constant-size input labels
- Constant-size output labels
- The maximum degree is constant
- Validity of the output is locally checkable

Locally Checkable Labellings (Example)

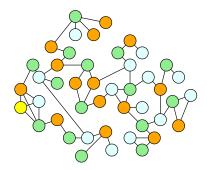


Locally Checkable Labellings (Example)



→ ∃ >

Locally Checkable Labellings (Example)



- Δ + 1 vertex colouring:
 - The input is empty
 - The output is in $\{1, \dots, \Delta + 1\}$
 - Nodes can check in 1 round if the colouring is valid

< 🗇 > <

There must be a constant time distributed algorithm that is able to check the solution, such that:

 If the output is globally correct, all nodes accept.

イボト イラト イラト

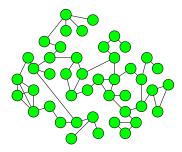
There must be a constant time distributed algorithm that is able to check the solution, such that:

• If the output is globally correct, all nodes accept.



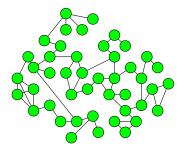
There must be a constant time distributed algorithm that is able to check the solution, such that:

• If the output is globally correct, all nodes accept.



There must be a constant time distributed algorithm that is able to check the solution, such that:

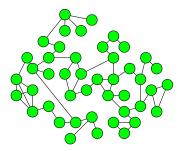
If the output is globally correct, all nodes accept.



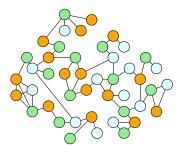
• If there is an error, at least a node rejects.

There must be a constant time distributed algorithm that is able to check the solution, such that:

If the output is globally correct, all nodes accept.



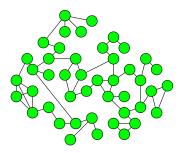
• If there is an error, at least a node rejects.



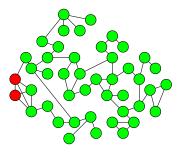
A D N A B N A B

There must be a constant time distributed algorithm that is able to check the solution, such that:

If the output is globally correct, all nodes accept.



• If there is an error, at least a node rejects.



A D F A A F F A

Locally Checkable Labellings (Motivation)

- Study the complexity of problems where the solution can be checked efficiently (like NP!)
- By restricting to constant degree graphs, we study problems related to distance, while ignoring the influence of other factors.
- It is a simple class that contains many well known problems.
- Lower bounds in this model apply to less powerful models.

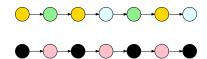
ロ と く 母 と く ヨ と

Question

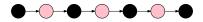
What are the possible time complexities for LCL problems?

伺い イヨト イヨト

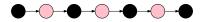
- There are only three possible time complexities:
 - $\Theta(1)$: trivial problems
 - $\Theta(\log^* n)$: local problems (symmetry breaking)
 - $\Theta(n)$: global problems



- There are only three possible time complexities:
 - $\Theta(1)$: trivial problems
 - $\Theta(\log^* n)$: local problems (symmetry breaking)
 - $\Theta(n)$: global problems
- Automatic speedups:
 - ► Any o(log* n)-rounds algorithm can be converted to a O(1)-rounds algorithm [Naor and Stockmeyer, 1995]
 - ► Any o(n)-rounds algorithm can be converted to a O(log* n)-rounds algorithm [Chang, Kopelowitz and Pettie, 2016]



- There are only three possible time complexities:
 - $\Theta(1)$: trivial problems
 - $\Theta(\log^* n)$: local problems (symmetry breaking)
 - $\Theta(n)$: global problems
- Automatic speedups:
 - ► Any o(log* n)-rounds algorithm can be converted to a O(1)-rounds algorithm [Naor and Stockmeyer, 1995]
 - ► Any o(n)-rounds algorithm can be converted to a O(log* n)-rounds algorithm [Chang, Kopelowitz and Pettie, 2016]
- On cycles with no input, given an LCL description, we can *decide* its time complexity. [Naor and Stockmeyer, 1995] [Brandt et al, 2017]



ロトス回とスヨケスヨケー

э

LCL on Trees

[Chang and Pettie, 2017]:

- Any $n^{o(1)}$ -rounds algorithm can be converted to a $O(\log n)$ -rounds algorithm
- There are problems of complexity $\Theta(n^{1/k})$

LCL on Trees

3

• There are problems with complexity $\Theta(\log n)$ [Brandt et al, 2016] [Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]

- There are problems with complexity $\Theta(\log n)$ [Brandt et al, 2016] [Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]
- Any $o(\log \log^* n)$ -rounds algorithm can be converted to a O(1)-rounds algorithm using the same techniques of [Naor and Stockmeyer, 1995]

・ロト ・四ト ・ヨト ・

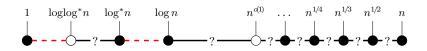
- There are problems with complexity $\Theta(\log n)$ [Brandt et al, 2016] [Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]
- Any o(log log* n)-rounds algorithm can be converted to a O(1)-rounds algorithm using the same techniques of [Naor and Stockmeyer, 1995]
- Any $o(\log n)$ -rounds algorithm can be converted to a $O(\log^* n)$ -rounds algorithm [Chang, Kopelowitz and Pettie, 2016]

- There are problems with complexity $\Theta(\log n)$ [Brandt et al, 2016] [Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]
- Any o(log log* n)-rounds algorithm can be converted to a O(1)-rounds algorithm using the same techniques of [Naor and Stockmeyer, 1995]
- Any o(log n)-rounds algorithm can be converted to a O(log* n)-rounds algorithm [Chang, Kopelowitz and Pettie, 2016]
- Many problems require $\Omega(\log n)$ and $O(\operatorname{poly} \log n)$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト ・

- There are problems with complexity $\Theta(\log n)$ [Brandt et al, 2016] [Chang, Kopelowitz and Pettie, 2016] [Ghaffari and Su, 2017]
- Any o(log log* n)-rounds algorithm can be converted to a O(1)-rounds algorithm using the same techniques of [Naor and Stockmeyer, 1995]
- Any $o(\log n)$ -rounds algorithm can be converted to a $O(\log^* n)$ -rounds algorithm [Chang, Kopelowitz and Pettie, 2016]
- Many problems require $\Omega(\log n)$ and $O(\operatorname{poly} \log n)$
- Different scenario with randomized algorithms

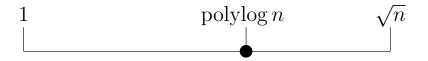
ロトス語とくほとくほと



э

Motivating Example

- Δ-colouring in general graphs can be done in O(polylog n) rounds [Panconesi, Srinivasan 1995]
- 4-colouring in 2-dimensional balanced grids can be done in *O*(polylog *n*) rounds



Motivating Example

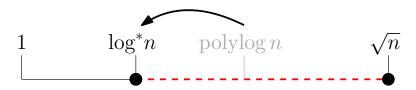
- Δ-colouring in general graphs can be done in O(polylog n) rounds [Panconesi, Srinivasan 1995]
- 4-colouring in 2-dimensional balanced grids can be done in *O*(polylog *n*) rounds

[Brandt et al. 2017]

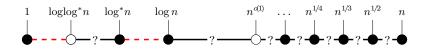
ロト イポト イヨト イヨト

Motivating Example

- Δ-colouring in general graphs can be done in O(polylog n) rounds [Panconesi, Srinivasan 1995]
- 4-colouring in 2-dimensional balanced grids can be done in *O*(polylog *n*) rounds



A (1) × (2) × (3) ×



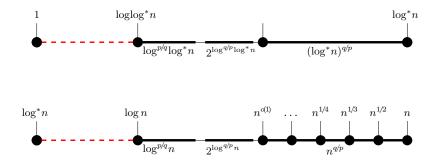
э

э

LCL on General Graphs (Our Results)

ъ

LCL on General Graphs (Our Results)



э

個人 くほと くほど

Proof idea

Counter Machine

• Registers

 $r_1, ..., r_k$

Reset

 $r_{a} = 1$

- Addition
 - $r_a = r_b + r_c$ $r_a = r_b + \text{constant}$
- if $r_a = r_b$

э

(日本) (日本) (日本)

Proof idea

- Registers $g(t) = \max\{r_1, \dots, r_k\}$ r_1, \dots, r_k at step t
- Reset
 - $r_{a} = 1$
- Addition
 - $r_a = r_b + r_c$ $r_a = r_b + \text{constant}$
- if $r_a = r_b$

э

Proof idea

• Registers
$$g(t) = \max\{r_1, \dots, r_k\}$$
 $T = f(g(t))$
 r_1, \dots, r_k at step t

- Reset
 - $r_{a} = 1$
- Addition
 - $r_a = r_b + r_c$ $r_a = r_b + \text{constant}$
- if $r_a = r_b$

э

(4回) (日) (日)

Conclusions and Open Problems

- What happens between $\Omega(\log \log^* n)$ and $O(\log^* n)$ on trees?
- Can we prove automatic speedups for some subclass of LCL problems?

Thank you!

Questions?

э

イロト 人間 とくほ とくほとう