Distributed Edge Coloring 1in
Time Polylogarithmic in A

Dennis Olivetti
Gran Sasso Science Institute, LAquila, Italy

Joint work with: Alkida Balliu, Sebastian Brandt, Fabian Kuhn

LOCAL model

» Undirected simple graph G = (V, E) of n
nodes and maximum degree /A

* Each node has a unique 1D
* Synchronous message passing model

* Unbounded computation

e Unbounded bandwidth

CONGEST model

» Undirected simple graph G = (V, E) of n
nodes and maximum degree /A

* Each node has a unique 1D
* Synchronous message passing model
* Unbounded computation

* O(log n)-bit messages

Four classical problems

Maximal ¢ | (A + 1)-vertex
independent set coloring

N\ N\

Maximal (2A - 1)-edge
matching coloring

Four classical problems

Maximal ¢ | (A + 1)-vertex
independent set coloring

N\ N\

Maximal (2A - 1)-edge
matching coloring

These problems can be solved in poly log 7 rounds [Rozhon, Ghaffari "20]

Four classical problems

Maximal ¢ | (A + 1)-vertex
independent set coloring

N\ N\

Maximal (2A - 1)-edge
matching coloring

These problems can be solved in poly log 7 rounds [Rozhon, Ghaffari "20]

These problems require (2(log * 727) rounds [Linial '87]

Four classical problems

Maximal ¢ | (A + 1)-vertex
independent set coloring

N\ N\

Maximal (2A - 1)-edge
matching coloring

These problems can be solved in poly log 7 rounds [Rozhon, Ghaffari "20]

These problems require (2(log * 727) rounds [Linial '87]

Big question: [(A) + O(log™ n)

Four classical problems

Maximal Matching O(A + log* n) Q(min{A, log, })
[Panconesi, Rizzi '01]} IBBHORS '19]

Four classical problems

Maximal Matching O(A + log* n)

[Panconesi, Rizzi '01]

Maximal O(A + lgg* n)
Independent Set [Barenboim, Elkin, Kuhn '09]

Q(min{A,log, n})

[IBBHORS '19]

Q(min{ A, log, n})

[BBHORS "19] [BBKO '22]

Maximal Matching

Maximal
Independent Set

(A + 1)-Vertex
Coloring

Four classical problems

O(A + log™* n)

[Panconesi, Rizzi '01]

O(A + log™* n)

[Barenboim, Elkin, Kuhn '09]

O(/Alog A + log* n)

[FHK '16] [BEG 18] [MT '20]

Q(min{A,log, n})

[IBBHORS '19]

Q(min{ A, log, n})

[BBHORS "19] [BBKO '22]

Four classical problems

Maximal Matching O(A + log* n) Q(min{A,log, n})
[Panconesi, Rizzi '01] IBBHORS '19]

Maximal O(A + log* n) Q(min{A, log, n})
Independent Set [Barenboim, Elkin, Kuhn '09] [BBHORS '19] [BBKO '22]
(A + 1)-Vertex O(y/Alog A +log*n)

(2A — 1)-Edge (log A)CUeglogd) 1 O(log* n)

Coloring [Balliu, Kuhn, Olivetti '20]

Four classical problems

Maximal Matching O(A + log* n) Q(min{A,log, n})
[Panconesi, Rizzi '01] IBBHORS '19]

Maximal O(A + log* n) Q(min{A, log, n})
Independent Set [Barenboim, Elkin, Kuhn '09] [BBHORS '19] [BBKO '22]
(A + 1)-Vertex O(y/Alog A +log*n)

(2A — 1)-Edge (log A)CUeglogd) 1 O(log* n)

- Coloring [Balliu, Kuhn, Olivetti '20]

(2A-1)-Edge Coloring

b
/
\

Edge coloring: state of the art

Edge coloring: state of the art

e (2A — 1)-edge coloring (achieved through (A + 1)-vertex coloring):

Edge coloring: state of the art

e (2A — 1)-edge coloring (achieved through (A + 1)-vertex coloring):

« O(A + log* n) [Barenboim, Elkin '09], [Kuhn '09]

Edge coloring: state of the art

e (2A — 1)-edge coloring (achieved through (A + 1)-vertex coloring):
« O(A + log* n) [Barenboim, Elkin '09], [Kuhn '09]

. O(AY* + log* n) [Barenboim '15]

Edge coloring: state of the art

e (2A — 1)-edge coloring (achieved through (A + 1)-vertex coloring):
« O(A + log* n) [Barenboim, Elkin '09], [Kuhn '09]

. O(AY* + log* n) [Barenboim '15]

. O(\/A log A + log™ n) [Fraigniaud, Heinrich, Kosowski '16] [Barenboim, Elkin, Goldenberg "18] [Maus,
onoyan '20]

Edge coloring: state of the art

e (2A — 1)-edge coloring (achieved through (A + 1)-vertex coloring):
« O(A + log* n) [Barenboim, Elkin '09], [Kuhn '09]

. O(AY* + log* n) [Barenboim "15]

. O(\/A log A + log™ n) [Fraigniaud, Heinrich, Kosowski '16] [Barenboim, Elkin, Goldenberg "18] [Maus,
onoyan '20]

« (A)-edge coloring: O(A® + log* n) [Barenboim, Elkin "10]

Edge coloring: state of the art

e (2A — 1)-edge coloring (achieved through (A + 1)-vertex coloring):
« O(A + log* n) [Barenboim, Elkin '09], [Kuhn '09]

. O(AY* + log* n) [Barenboim "15]

. O(\/A log A + log™ n) [Fraigniaud, Heinrich, Kosowski '16] [Barenboim, Elkin, Goldenberg "18] [Maus,
onoyan '20]

« (A)-edge coloring: O(A® + log* n) [Barenboim, Elkin "10]

. (2A — 1)-edge coloring in 2012 A) L O(log* n) [Kuhn "20]

Edge coloring: state of the art

e (2A — 1)-edge coloring (achieved through (A + 1)-vertex coloring):
« O(A + log* n) [Barenboim, Elkin '09], [Kuhn '09]

. O(AY* + log* n) [Barenboim "15]

. O(\/A log A + log™ n) [Fraigniaud, Heinrich, Kosowski '16] [Barenboim, Elkin, Goldenberg "18] [Maus,
onoyan '20]

« (A)-edge coloring: O(A® + log* n) [Barenboim, Elkin "10]

. (2A — 1)-edge coloring in 2012 A) L O(log* n) [Kuhn "20]

« (2A — 1)-edge coloring in (log A)PUoglog2) 4 O(log* n) [Balliu, Kuhn, Olivetti "20]

Edge coloring: state of the art

e (2A — 1)-edge coloring (achieved through (A + 1)-vertex coloring):
« O(A + log* n) [Barenboim, Elkin '09], [Kuhn '09]

. O(AY* + log* n) [Barenboim "15]

. O(\/A log A + log™ n) [Fraigniaud, Heinrich, Kosowski '16] [Barenboim, Elkin, Goldenberg "18] [Maus,
onoyan '20]

« (A)-edge coloring: O(A® + log* n) [Barenboim, Elkin "10]

. (2A — 1)-edge coloring in 2012 A) L O(log* n) [Kuhn "20]

« (2A — 1)-edge coloring in (log A)PUoglog2) 4 O(log* n) [Balliu, Kuhn, Olivetti "20]

e Can we solve (ZA — |)-edge coloring in poly log A + O(log™ n) rounds?

Our results

(2A — 1)-Edge

Coloring

O(A)-Edge

Coloring

O(poly log A + log™ n)

O(poly log A + log™ n)

LOCAL
mode]

CONGEST
model

Our results

(degree + 1)-List O(log’ C - log’ A + log* n) | OCAL
Edge Coloring model

(2A — 1)-Edge O(log'? A + log* n) LOCAL
Coloring model

(8 + £)A-Edge (log12 A) CONGEST
0, + log™ n

Coloring 6 model

A possible approach

Try to recursively color the edges with 2
colors, such that each node has roughly
the same amount of incident edges for
each color

A possible approach

Try to recursively color the edges with 2
colors, such that each node has roughly
the same amount of incident edges for
each color

s

A possible approach

Try to recursively color the edges with 2
colors, such that each node has roughly
the same amount of incident edges for
each color

s

A possible approach

A possible approach

» Start from a graph of maximum degree A, 2-color the edges such that
the graph induced by each color has maximum degree roughly A/2,
Recurse on each subgraph.

A possible approach

» Start from a graph of maximum degree A, 2-color the edges such that
the graph induced by each color has maximum degree roughly A/2,
Recurse on each subgraph.

| | | 1+e)\
o After 1" steps of recursion the maximum degree is A - 5

A possible approach

» Start from a graph of maximum degree A, 2-color the edges such that
the graph induced by each color has maximum degree roughly A/2,
Recurse on each subgraph.

| | | 1+e)\
o After 1" steps of recursion the maximum degree is A - 5

+ Letusfixl =logAande = 1/log A

A possible approach

» Start from a graph of maximum degree A, 2-color the edges such that
the graph induced by each color has maximum degree roughly A/2,
Recurse on each subgraph.

| | | 1+e)\
o After 1" steps of recursion the maximum degree is A - 5

+ Letusfixl =logAande = 1/log A

« After | steps each subgraph has constant maximum degree

A possible approach

» Start from a graph of maximum degree A, 2-color the edges such that

o After 1" steps of recursion the maximum degree is A - (

the graph induced by each color has maximum degree roughly A/2,

Recurse on each subgraph.

Letusfix I' = log A ande = 1/log A
After | steps each subgraph has constant maximum degree

The number of colors is 27 - O(1) = O(A)

1+ ¢
2

;

A possible approach

» Start from a graph of maximum degree A, 2-color the edges such that
the graph induced by each color has maximum degree roughly A/2,
Recurse on each subgraph.

| | | 1+e)\
o After 1" steps of recursion the maximum degree is A - 5

+ Letusfixl =logAande = 1/log A
« After | steps each subgraph has constant maximum degree

» The number of colorsis 2’ - O(1) = O(A)

» Running time: log A - Tbalanced_2_col T Tﬁnal

A possible approach

Start from a graph of maximum degree A, 2-color the edges such that
the graph induced by each color has maximum degree roughly A/2,
Recurse on each subgraph.

| | | 1+e)\
After 'I' steps of recursion the maximum degree is A - 5

Letusfix I' = log Aande = 1/log A

After | steps each subgraph has constant maximum degree
The number of colorsis 2’ - O(1) = O(A)

Running time: 102 A - T}, 1 ced 2 col T Thinal

N

Can be done in just O(log™ n)

A possible approach

Start from a graph of maximum degree A, 2-color the edges such that
the graph induced by each color has maximum degree roughly A/2,
Recurse on each subgraph.

| | | 1+e)\
After 'I' steps of recursion the maximum degree is A - 5

Letusfix I' = log Aande = 1/log A

After | steps each subgraph has constant maximum degree
The number of colorsis 2’ - O(1) = O(A)

Running time: 102 A - T}, 1 ced 2 col T Thinal

-~ N

This requires too much! Can be done in just O(log™ n)

A possible approach: the 1ssue

» 2-coloring the edges such that each node has at least one incident edge
for each color requires (2(10g 77) rounds, but our target runtime is

O(poly log A + log™ n)

Relaxing the problem: different splitting

Relaxing the problem: different splitting

* d-node-defective c-edge-coloring: color the edges with ¢ colors such
that each node has at most d incident edges of the same color.

Relaxing the problem: different splitting

* d-node-defective c-edge-coloring: color the edges with ¢ colors such
that each node has at most d incident edges of the same color.

Relaxing the problem: different splitting

* d-node-defective c-edge-coloring: color the edges with ¢ colors such
that each node has at most d incident edges of the same color.

Thisishardforc = 2andd < A — |

Relaxing the problem: different splitting

* d-node-defective c-edge-coloring: color the edges with ¢ colors such
that each node has at most d incident edges of the same color.

Thisishardforc = 2andd < A — |

Also, this seems to be useful only ford < (1 + &)A/c

Relaxing the problem: different splitting

* d-node-defective c-edge-coloring: color the edges with ¢ colors such
that each node has at most d incident edges of the same color.

Thisishardforc = 2andd < A — |

Also, this seems to be useful only ford < (1 + &)A/c

Actually, this is hard for all parameters for which it is useful!

Relaxing the problem: different splitting

* d-node-defective c-edge-coloring: color the edges with ¢ colors such
that each node has at most d incident edges of the same color.

Thisishardforc = 2andd < A — |

Also, this seems to be useful only ford < (1 + &)A/c

Actually, this is hard for all parameters for which it is useful!

» d-edge-defective c-edge-coloring: color the edges with ¢ colors such
that each edge has at most d incident edges of the same color.

* d-node-defective c-edge-coloring: color the edges with ¢ colors such
that each node has at most d incident edges of the same color.

Thisishardforc = 2andd < A — |

Also, this seems to be useful only ford < (1 + &)A/c

Actually, this is hard for all parameters for which it is useful!

» d-edge-defective c-edge-coloring: color the edges with ¢ colors such
that each edge has at most d incident edges of the same color.

Relaxing the problem: different splitting

NN
NN

* d-node-defective c-edge-coloring: color the edges with ¢ colors such
that each node has at most d incident edges of the same color.

Thisishardforc = 2andd < A — |

Also, this seems to be useful only ford < (1 + &)A/c

Actually, this is hard for all parameters for which it is useful!

» d-edge-defective c-edge-coloring: color the edges with ¢ colors such
that each edge has at most d incident edges of the same color.

This is the problem that we tried to solve, for ¢ = 2 and
d<(1+¢eA

Relaxing the problem: different splitting

N

NN

Edge Defective Edge Coloring

Edge Defective Edge Coloring

W >
]
\

Edge Defective Edge Coloring

W >

()=

Edge Defective Edge Coloring

E

S~
e
NOTRIA

Edge Defective Edge Coloring

[A\
@<
A

Edge Defective Edge Coloring

e [7<
A

Semi1 Matching

» Orient the edges of a graph such that, for each edge (11, V) oriented from u to v, it holds that
deg;,(v) < deg;,(u) + 1

Semi1 Matching

» Orient the edges of a graph such that, for each edge (11, V) oriented from u to v, it holds that
deg;,(v) < deg;,(u) + 1

* Color blue the edges incoming on black nodes, color red the edges incoming on white
nodes

Semi1 Matching

» Orient the edges of a graph such that, for each edge (11, V) oriented from u to v, it holds that
deg;,(v) < deg;,(u) + 1

* Color blue the edges incoming on black nodes, color red the edges incoming on white
nodes

Semi1 Matching

» Orient the edges of a graph such that, for each edge (11, V) oriented from u to v, it holds that
deg;,(v) < deg;,(u) + 1

* Color blue the edges incoming on black nodes, color red the edges incoming on white
nodes

» Defect: (deg;,(v) — 1)+ (A —deg;,,(u) — 1) <

Semi1 Matching

» Orient the edges of a graph such that, for each edge (11, V) oriented from u to v, it holds that
deg;,(v) < deg;,(u) + 1

* Color blue the edges incoming on black nodes, color red the edges incoming on white
nodes

» Defect: (deg, (v) — 1)+ (A —deg,,(u) — 1) <
(degm(u) +1 - 1) + (A degm(u) o 1) —

Semi1 Matching

 Orient the edges of a graph such that, for each edge (i, v) oriented from
utov,itholds thatdeg, (v) < deg, (1) + |

Efficient Load-Balancing through Distributed Token Dropping

|[Brandt, Keller, Rybicki, Suomela, Uitto 2021]

This problem can be solved in O(A%) rounds!

Issues

* Semi-matching solves "balanced” edge 2-coloring, but:

Issues

* Semi-matching solves "balanced"” edge 2-coloring, but:

e The running time is O(A”), we want O(log® A)

Issues

* Semi-matching solves "balanced” edge 2-coloring, but:
e The running time is O(A”), we want O(log® A)

* We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is
given, we do not have that

Issues

* Semi-matching solves "balanced"” edge 2-coloring, but:
e The running time is O(A”), we want O(log® A)

* We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is
given, we do not have that

* The conversion only works on regular graphs, we do not have that

Issues

* Semi-matching solves "balanced"” edge 2-coloring, but:
e The running time is O(A”), we want O(log® A)

* We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is
given, we do not have that

* The conversion only works on regular graphs, we do not have that

» The recursion schema solves O(A)-edge coloring, not (2ZA — 1)-edge coloring.
For a better result, we need to solve a harder variant (list coloring)

Issues

* Semi-matching solves "balanced"” edge 2-coloring, but:
e The running time is O(A”), we want O(log® A)

* We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is
given, we do not have that

* The conversion only works on regular graphs, we do not have that -
This Is easy to handle

» The recursion schema solves O(A)-edge coloring, not (2ZA — 1)-edge coloring.
For a better result, we need to solve a harder variant (list coloring)

Issues

* Semi-matching solves "balanced"” edge 2-coloring, but:
e The running time is O(A”), we want O(log® A)

* We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is
given, we do not have that

* The conversion only works on regular graphs, we do not have that -

This Is easy to handle

» The recursion schema solves O(A)-edge coloring, not (2ZA — 1)-edge coloring.
For a better result, we need to solve a harder variant (list coloring) -

This is very challenging

Issues

* Semi-matching solves "balanced"” edge 2-coloring, but:
e The running time is O(A”), we want O(log® A)

* We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is

given, we do not have that
~ This is not hard

* The conversion only works on regular graphs, we do not have that -

This is easy to handle

» The recursion schema solves O(A)-edge coloring, not (2ZA — 1)-edge coloring.
For a better result, we need to solve a harder variant (list coloring) -

This is very challenging

Issues

* Semi-matching solves "balanced"” edge 2-coloring, but:

e The running time is O(A”), we want O(log® A)
I~ This is interesting

* We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is

given, we do not have that
~ This is not hard

* The conversion only works on regular graphs, we do not have that -

This is easy to handle

» The recursion schema solves O(A)-edge coloring, not (2ZA — 1)-edge coloring.
For a better result, we need to solve a harder variant (list coloring) -

This is very challenging

Issues

* Semi-matching solves "balanced"” edge 2-coloring, but:

e The running time is O(A”), we want O(log® A)
I~ This is interesting
. We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is

| given, we do not have that
This is not hard |

R o el el i ey s s o = Lo e Lo ooan X o g o = A e Lo o el T ol Aon A Lot

* The conversion only works on regular graphs, we do not have that -

This Is easy to handle

» The recursion schema solves O(A)-edge coloring, not (2ZA — 1)-edge coloring.
For a better result, we need to solve a harder variant (list coloring) -

This is very challenging

Removing the 2-coloring requirement

Removing the 2-coloring requirement

» The (¢A + | A/2|)-defective vertex 4-coloring problem can be solved in
O(log™ n) rounds [Barenboim, Elkin, Kuhn 2014]

Removing the 2-coloring requirement

» The (¢A + | A/2|)-defective vertex 4-coloring problem can be solved in
O(log™ n) rounds [Barenboim, Elkin, Kuhn 2014]

* We can color the nodes of a graph with 4 colors, such that, for each node,
not much more than half of its neighbors have the same color

Removing the 2-coloring requirement

» The (¢A + | A/2|)-defective vertex 4-coloring problem can be solved in
O(log™ n) rounds [Barenboim, Elkin, Kuhn 2014]

* We can color the nodes of a graph with 4 colors, such that, for each node,
not much more than half of its neighbors have the same color

* Let's ignore monochromatic edges, we can recurse on them later

Removing the 2-coloring requirement

» The (¢A + | A/2|)-defective vertex 4-coloring problem can be solved in
O(log™ n) rounds [Barenboim, Elkin, Kuhn 2014]

* We can color the nodes of a graph with 4 colors, such that, for each node,
not much more than half of its neighbors have the same color

* Let's ignore monochromatic edges, we can recurse on them later

* We have a 4 coloring, we need a 2 coloring...

Removing the 2-coloring requirement

Removing the 2-coloring requirement

O 0"

Removing the 2-coloring requirement

Removing the 2-coloring requirement

ey
iy

Removing the 2-coloring requirement

[~ >
Q/O

Removing the 2-coloring requirement

[~ ~
j

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

N
/

./0 o T

Removing the 2-coloring requirement

N\
Q/O

p

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

N
/

./O o T

Removing the 2-coloring requirement

Removing the 2-coloring requirement

DUR e
N
(AN

Removing the 2-coloring requirement

Removing the 2-coloring requirement

» Assume we have an (A)-edge coloring algorithm for 2-vertex colored graphs.

Removing the 2-coloring requirement

» Assume we have an (A)-edge coloring algorithm for 2-vertex colored graphs.

» We can use c/A colors to partially edge-color the graph, such that the maximum vertex
degree roughly halves

Removing the 2-coloring requirement

» Assume we have an (A)-edge coloring algorithm for 2-vertex colored graphs.

» We can use c/A colors to partially edge-color the graph, such that the maximum vertex
degree roughly halves

» We can then use c/A/2 other colors to partially color the remaining edges, such that the
maximum vertex degree roughly halves again...

Removing the 2-coloring requirement

» Assume we have an (A)-edge coloring algorithm for 2-vertex colored graphs.

» We can use c/A colors to partially edge-color the graph, such that the maximum vertex
degree roughly halves

» We can then use c/A/2 other colors to partially color the remaining edges, such that the
maximum vertex degree roughly halves again...

* Repeat... at step i, we use c/A /2" colors, and the maximum degree goes down by a factor 2

Removing the 2-coloring requirement

» Assume we have an (J(A)-edge coloring algorithm for 2-vertex colored graphs.

» We can use c/A colors to partially edge-color the graph, such that the maximum vertex
degree roughly halves

» We can then use c/A/” other colors to partially color the remaining edges, such that the
maximum vertex degree roughly halves again...

* Repeat... at step i, we use c/A /2" colors, and the maximum degree goes down by a factor 2

» With 2cA = O(A) colors we color all the edges

Removing the 2-coloring requirement

» Assume we have an (J(A)-edge coloring algorithm for 2-vertex colored graphs.

» We can use c/A colors to partially edge-color the graph, such that the maximum vertex
degree roughly halves

» We can then use c/A/” other colors to partially color the remaining edges, such that the
maximum vertex degree roughly halves again...

* Repeat... at step i, we use c/A /2" colors, and the maximum degree goes down by a factor 2

» With 2cA = O(A) colors we color all the edges

Given a / round algorithm for O(/A)-edge coloring in bipartite 2-colored graphs,
we can construct an algorithm for (J(A\)-edge coloring in general graphs that runs
in O(7 log A + log™ n) rounds

Issues

* Semi-matching solves "balanced"” edge 2-coloring, but:

The running time is O(A*), we want O(log“ A)
I~ This is mterestlng

]; We can turn a semi- matchlng mto a edge 2 Colorlng only |f 2 2 vertex colorlng is glven 1
| we do not have that S
This is not hard |

SR e T a4 ey sl 1 i Lo e Lo ooan B D Ao 80 Lo R jeck il i) oles Ao A Lo oo

The conversion only works on regular graphs, we do not have that -

This Is easy to handle

The recursion schema solves O(A)-edge coloring, not (ZA — |)-edge coloring.
For a better result, we need to solve a harder variant (list coloring) -

This is very challenging

Issues

* Semi-matching solves "balanced"” edge 2-coloring, but:

AR N P e W PN - P B, 2 s oo g o oo o A D PIINTOAI. - 3) o @ o oo o o D e —

. j The running time is O(A%), we want O(log® A) ‘

¥~ This is interesting :

* We can turn a semi-matching into a edge 2-coloring only if a 2-vertex coloring is given,
we do not have that
— This is not hard

* The conversion only works on regular graphs, we do not have that -

This Is easy to handle

» The recursion schema solves O(A)-edge coloring, not (2ZA — 1)-edge coloring.
For a better result, we need to solve a harder variant (list coloring) -

This is very challenging

Relaxed Semi1 Matching

Relaxed Semi1 Matching

 Orient the edges of a graph such that, for each edge (i, v) oriented from u to v,
it holds that deg. (v) < deg, (1) + |

Relaxed Semi1 Matching

 Orient the edges of a graph such that, for each edge (i, v) oriented from u to v,
it holds that deg. (v) < deg, (1) + |

 This allows us to reduce the maximum edge degree from (2ZA — 2)to (A — 1),

i.e., the new edge degree is 1/2 the original edge degree. Unfortunately, O(A™)
IS t00 expensive.

Relaxed Semi1 Matching

 Orient the edges of a graph such that, for each edge (i, v) oriented from u to v,
it holds that deg. (v) < deg, (1) + |

 This allows us to reduce the maximum edge degree from (2ZA — 2)to (A — 1),

i.e., the new edge degree is 1/2 the original edge degree. Unfortunately, O(A™)
IS t00 expensive.

1
(1 u logA)

« How about ——mm —7?

2

Relaxed Semi1 Matching

 Orient the edges of a graph such that, for each edge (i, v) oriented from u to v,
it holds that deg. (v) < deg, (1) + |

 This allows us to reduce the maximum edge degree from (2ZA — 2)to (A — 1),

i.e., the new edge degree is 1/2 the original edge degree. Unfortunately, O(A™)
IS t00 expensive.

1
(1 u logA)

« How about ——mm —7?

2

* |n order to achieve this, it turns out that it is enough to solve a more relaxed

variant of semi-matching, that satisfies deg. (v) < deg. (1) + oA
Og

Relaxed Semi1 Matching

Relaxed Semi1 Matching

» Orient the edges of a graph such that, for each edge (1, V) oriented
from u to v, it holds that deg. (v) < deg. (1) + £

Relaxed Semi1 Matching

» Orient the edges of a graph such that, for each edge (1,) oriented
from u to v, it holds that deg. (v) < deg. (1) + £

+ This problem can be solved in O(A”/k”) rounds!

Relaxed Semi1 Matching

» Orient the edges of a graph such that, for each edge (1,) oriented
from u to v, it holds that deg. (v) < deg. (1) + £

+ This problem can be solved in O(A”/k”) rounds!

A

, this gives an O(l()g5 A) round algorithm!
log A

e Fork =

Fixing a solution

-

Fixing a solution

Y
@<

Fixing a solution

Fixing a solution

Token Dropping Game

Y
@<

Token Dropping Game

Token Dropping Game

S

. \ K\ .

Token Dropping Game

S

. \ x .

Token Dropping Game

Token Dropping Game

Token Dropping Game

* We are given an directed acyclic graph

 Each node holds either 0 or 1 token

* Tokens can be moved from u to v if and only if: @ Q

* the edge {u, v} exists

* the edge {u, v} is oriented from v to u

* uis holding a token Q

* vis not holding a token

* Once a token passes through an edge, the edge disappears

« We want to reach a stable solution

Token Dropping Game

o (O (@

Token Dropping Game

O OENO

Token Dropping Game

O OEN®

Token Dropping Game

O

Token Dropping Game

Efficient Load-Balancing through Distributed Token Dropping

|Brandt, Keller, Rybicki, Suomela, Uitto 2021]

The Token Dropping Game can be solved in O(/. - A”) rounds!

O

Semi1 Matching

Efficient Load-Balancing through Distributed Token Dropping

|Brandt, Keller, Rybicki, Suomela, Uitto 2021]

The Token Dropping Game can be solved in O(/. - A”) rounds!

The Semi Matching problem can be solved by solving the Token
Dropping Game for O(A) times (and L. = O(A))

Semi Matching problem can be solved in O(A“) rounds!

Token Dropping Game

* We are given an directed acyclic graph

 Each node holds either 0 or 1 token

* A token can be moved from u to v if and only if: @ Q

* the edge {u, v} exists

* the edge {u, v} is oriented from v to u

* uis holding a token Q

* vis not holding a token

* Once a token passes through an edge, the edge disappears

« We want to reach a stable solution

Relaxed Token Dropping Game

* We are given an directed acyclic graph

» Each node holds up to k tokens

* A token can be moved from u to v if and only if: @ @
* the edge {u, v} exists '
* the edge {u, v} is oriented from v to u

* uis holding at least one token @ @

* v is holding at most k-1 tokens, a token must move if v is holding at most k/2 tokens

* Once a token passes through an edge, the edge disappears

« We want to reach a stable solution

Relaxed Token Dropping Game

Relaxed Token Dropping Game

. The Relaxed Token Dropping Game can be solved in O(. - A”/k”)
rounds!

Relaxed Token Dropping Game

. The Relaxed Token Dropping Game can be solved in O(. - A”/k”)
rounds!

. The Relaxed Semi Matching problem can be solved in O(A”/k”) rounds!

Relaxed Token Dropping Game

. The Relaxed Token Dropping Game can be solved in O(. - A”/k”)
rounds!

. The Relaxed Semi Matching problem can be solved in O(A”/k”) rounds!

A
log A

e Fork =

, this gives an 0(1()g5 A) round algorithm!

Relaxed Token Dropping Game

. The Relaxed Token Dropping Game can be solved in O(. - A”/k”)
rounds!

. The Relaxed Semi Matching problem can be solved in O(A”/k”) rounds!

A
log A

e Fork =

, this gives an 0(10g5 A) round algorithm!

» With some poly log A overhead, we can solve (A)-edge coloring!

Relaxed Token Dropping Game

. The Relaxed Token Dropping Game can be solved in O(. - A”/k”)
rounds!

. The Relaxed Semi Matching problem can be solved in O(A”/k”) rounds!

A
log A

e Fork = , this gives an 0(10g5 A) round algorithm!

» With some poly log A overhead, we can solve (A)-edge coloring!

* For (2ZA — 1)-edge coloring, things are harder. E.g., the game is not even
on a DAG!

Open questions: upper bounds

e We can solve (2ZA — 1)-edge coloring in O(log12 A) + O(log* n)

>~ Can we improve the exponent? We know a faster algorithm, but only for
O(A)-edge coloring

» Can we solve vertex coloring in subpoly(A)?

Open questions: lower bounds

» Can we prove a non-trivial lower bound for solving (2A - 1)-edge coloring?

> Can we show that it cannot be solved in o(log A) + O(log* n)?

Thank you!

