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LOCAL model
• Undirected simple graph G = (V, E) of n 

nodes and maximum degree Δ


• Each node has a unique ID


• Synchronous message passing model


• Unbounded computation


• Unbounded bandwidth
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CONGEST model
• Undirected simple graph G = (V, E) of n 

nodes and maximum degree Δ


• Each node has a unique ID


• Synchronous message passing model


• Unbounded computation


• O(log n)-bit messages
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Four classical problems

Maximal 
independent set

(Δ + 1)-vertex 
coloring

(2Δ - 1)-edge 
coloring

Maximal 
matching

These problems can be solved in  rounds [Rozhon, Ghaffari ’20]poly log n

These problems require  rounds [Linial ’87]Ω(log * n)

Big question:    f(Δ) + O(log* n)
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[FHK '16] [BEG '18] [MT '20]
O( Δ log Δ + log* n)-Vertex 

Coloring
(Δ + 1)

 
[Balliu, Kuhn, Olivetti '20]
(log Δ)O(log log Δ) + O(log* n)-Edge 

Coloring
(2Δ − 1)!



(2 -1)-Edge ColoringΔ
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Edge coloring: state of the art
• -edge coloring (achieved through -vertex coloring): (2Δ − 1) (Δ + 1)

•  [Barenboim, Elkin ’09], [Kuhn ’09]O(Δ + log* n)

•  [Barenboim ’15]O(Δ3/4 + log* n)

•  [Fraigniaud, Heinrich, Kosowski ’16] [Barenboim, Elkin, Goldenberg ’18] [Maus, 
Tonoyan ’20]
O( Δ log Δ + log* n)

• -edge coloring:  [Barenboim, Elkin ’10]O(Δ) O(Δε + log* n)

• -edge coloring in  [Kuhn ’20](2Δ − 1) 2O( log Δ) + O(log* n)

• -edge coloring in  [Balliu, Kuhn, Olivetti ’20](2Δ − 1) (log Δ)O(log log Δ) + O(log* n)

• Can we solve -edge coloring in  rounds?(2Δ − 1) poly log Δ + O(log* n)
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• 2-coloring the edges such that each node has at least one incident edge 
for each color requires  rounds, but our target runtime isΩ(log n)
O(poly log Δ + log* n)

A possible approach: the issue
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• d-node-defective c-edge-coloring: color the edges with c colors such 
that each node has at most d incident edges of the same color.

This is hard for  and c = 2 d ≤ Δ − 1

Also, this seems to be useful only for d ≤ (1 + ε)Δ/c

Actually, this is hard for all parameters for which it is useful!

• d-edge-defective c-edge-coloring: color the edges with c colors such 
that each edge has at most d incident edges of the same color.

This is the problem that we tried to solve, for  and c = 2
d ≤ (1 + ε)Δ

Relaxing the problem: different splitting



Edge Defective Edge Coloring



Edge Defective Edge Coloring



Edge Defective Edge Coloring



Edge Defective Edge Coloring



Edge Defective Edge Coloring



Edge Defective Edge Coloring



u v

• Orient the edges of a graph such that, for each edge  oriented from  to , it holds that (u, v) u v
degin(v) ≤ degin(u) + 1

Semi Matching



u v

• Orient the edges of a graph such that, for each edge  oriented from  to , it holds that (u, v) u v
degin(v) ≤ degin(u) + 1

• Color blue the edges incoming on black nodes, color red the edges incoming on white 
nodes

Semi Matching



u vu v

• Orient the edges of a graph such that, for each edge  oriented from  to , it holds that (u, v) u v
degin(v) ≤ degin(u) + 1

• Color blue the edges incoming on black nodes, color red the edges incoming on white 
nodes

Semi Matching



u vu v

• Orient the edges of a graph such that, for each edge  oriented from  to , it holds that (u, v) u v
degin(v) ≤ degin(u) + 1

• Color blue the edges incoming on black nodes, color red the edges incoming on white 
nodes

• Defect:  (degin(v) − 1) + (Δ − degin(u) − 1) ≤

Semi Matching



u vu v

• Orient the edges of a graph such that, for each edge  oriented from  to , it holds that (u, v) u v
degin(v) ≤ degin(u) + 1

• Color blue the edges incoming on black nodes, color red the edges incoming on white 
nodes

• Defect:  (degin(v) − 1) + (Δ − degin(u) − 1) ≤
(degin(u) + 1 − 1) + (Δ − degin(u) − 1) = Δ − 1
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• Orient the edges of a graph such that, for each edge  oriented from 
 to , it holds that 


Efficient Load-Balancing through Distributed Token Dropping


[Brandt, Keller, Rybicki, Suomela, Uitto 2021]


This problem can be solved in  rounds!

(u, v)
u v degin(v) ≤ degin(u) + 1

O(Δ4)

Semi Matching
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• Assume we have an -edge coloring algorithm for 2-vertex colored graphs.O(Δ)

• We can use  colors to partially edge-color the graph, such that the maximum vertex 
degree roughly halves

cΔ

• We can then use  other colors to partially color the remaining edges, such that the 
maximum vertex degree roughly halves again...

cΔ/2

• Repeat... at step i, we use  colors, and the maximum degree goes down by a factor 2cΔ/2i

• With  colors we color all the edges2cΔ = O(Δ)

Removing the 2-coloring requirement

Given a  round algorithm for -edge coloring in bipartite 2-colored graphs, 
we can construct an algorithm for -edge coloring in general graphs that runs 

in  rounds

T O(Δ)
O(Δ)

O(T log Δ + log* n)
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we do not have that


• The conversion only works on regular graphs, we do not have that


• The recursion schema solves -edge coloring, not -edge coloring.        
For a better result, we need to solve a harder variant (list coloring)

O(Δ4) O(logc Δ)

O(Δ) (2Δ − 1)

Issues

This is easy to handle

This is very challenging

This is not hard

This is interesting



Relaxed Semi Matching



• Orient the edges of a graph such that, for each edge  oriented from  to , 
it holds that 

(u, v) u v
degin(v) ≤ degin(u) + 1
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• Orient the edges of a graph such that, for each edge  oriented from  to , 
it holds that 

(u, v) u v
degin(v) ≤ degin(u) + 1

• This allows us to reduce the maximum edge degree from  to , 
i.e., the new edge degree is 1/2 the original edge degree. Unfortunately,  
is too expensive.

(2Δ − 2) (Δ − 1)
O(Δ4)
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• Orient the edges of a graph such that, for each edge  oriented from  to , 
it holds that 

(u, v) u v
degin(v) ≤ degin(u) + 1

• This allows us to reduce the maximum edge degree from  to , 
i.e., the new edge degree is 1/2 the original edge degree. Unfortunately,  
is too expensive.

(2Δ − 2) (Δ − 1)
O(Δ4)

• How about  ? 
(1 + 1

log Δ )
2
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• Orient the edges of a graph such that, for each edge  oriented from  to , 
it holds that 

(u, v) u v
degin(v) ≤ degin(u) + 1

• This allows us to reduce the maximum edge degree from  to , 
i.e., the new edge degree is 1/2 the original edge degree. Unfortunately,  
is too expensive.

(2Δ − 2) (Δ − 1)
O(Δ4)

• How about  ? 
(1 + 1

log Δ )
2

• In order to achieve this, it turns out that it is enough to solve a more relaxed 

variant of semi-matching, that satisfies degin(v) ≤ degin(u) +
Δ

log Δ

Relaxed Semi Matching



Relaxed Semi Matching



• Orient the edges of a graph such that, for each edge  oriented 
from  to , it holds that 

(u, v)
u v degin(v) ≤ degin(u) + k
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• Orient the edges of a graph such that, for each edge  oriented 
from  to , it holds that 

(u, v)
u v degin(v) ≤ degin(u) + k

• This problem can be solved in  rounds!O(Δ5/k5)
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• Orient the edges of a graph such that, for each edge  oriented 
from  to , it holds that 

(u, v)
u v degin(v) ≤ degin(u) + k

• This problem can be solved in  rounds!O(Δ5/k5)

• For , this gives an  round algorithm!k =
Δ

log Δ
O(log5 Δ)

Relaxed Semi Matching



Fixing a solution
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Token Dropping Game
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Token Dropping Game



• We are given an directed acyclic graph


• Each node holds either 0 or 1 token


• Tokens can be moved from u to v if and only if:


• the edge {u, v} exists


• the edge {u, v} is oriented from v to u


• u is holding a token


• v is not holding a token


• Once a token passes through an edge, the edge disappears


• We want to reach a stable solution

Token Dropping Game
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Efficient Load-Balancing through Distributed Token Dropping


[Brandt, Keller, Rybicki, Suomela, Uitto 2021]


The Token Dropping Game can be solved in  rounds!O(L ⋅ Δ2)

Token Dropping Game

L



Efficient Load-Balancing through Distributed Token Dropping


[Brandt, Keller, Rybicki, Suomela, Uitto 2021]


The Token Dropping Game can be solved in  rounds!


The Semi Matching problem can be solved by solving the Token 
Dropping Game for  times (and )


Semi Matching problem can be solved in  rounds!

O(L ⋅ Δ2)

O(Δ) L = O(Δ)

O(Δ4)

Semi Matching



• We are given an directed acyclic graph


• Each node holds either 0 or 1 token


• A token can be moved from u to v if and only if:


• the edge {u, v} exists


• the edge {u, v} is oriented from v to u


• u is holding a token


• v is not holding a token


• Once a token passes through an edge, the edge disappears


• We want to reach a stable solution

Token Dropping Game



• We are given an directed acyclic graph


• Each node holds up to k tokens


• A token can be moved from u to v if and only if:


• the edge {u, v} exists


• the edge {u, v} is oriented from v to u


• u is holding at least one token


• v is holding at most k-1 tokens, a token must move if v is holding at most k/2 tokens


• Once a token passes through an edge, the edge disappears


• We want to reach a stable solution

Relaxed Token Dropping Game
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• The Relaxed Token Dropping Game can be solved in  
rounds!

O(L ⋅ Δ3/k3)

Relaxed Token Dropping Game



• The Relaxed Token Dropping Game can be solved in  
rounds!

O(L ⋅ Δ3/k3)

• The Relaxed Semi Matching problem can be solved in  rounds!O(Δ5/k5)
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rounds!

O(L ⋅ Δ3/k3)

• The Relaxed Semi Matching problem can be solved in  rounds!O(Δ5/k5)

• For , this gives an  round algorithm!k =
Δ

log Δ
O(log5 Δ)
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• The Relaxed Token Dropping Game can be solved in  
rounds!

O(L ⋅ Δ3/k3)

• The Relaxed Semi Matching problem can be solved in  rounds!O(Δ5/k5)

• For , this gives an  round algorithm!k =
Δ

log Δ
O(log5 Δ)

• With some  overhead, we can solve -edge coloring!poly log Δ O(Δ)
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• The Relaxed Token Dropping Game can be solved in  
rounds!

O(L ⋅ Δ3/k3)

• The Relaxed Semi Matching problem can be solved in  rounds!O(Δ5/k5)

• For , this gives an  round algorithm!k =
Δ

log Δ
O(log5 Δ)

• With some  overhead, we can solve -edge coloring!poly log Δ O(Δ)

• For -edge coloring, things are harder. E.g., the game is not even 
on a DAG!

(2Δ − 1)

Relaxed Token Dropping Game



Open questions: upper bounds

• We can solve -edge coloring in  + O(log* n)


‣ Can we improve the exponent? We know a faster algorithm, but only for 
-edge coloring


• Can we solve vertex coloring in subpoly(Δ)?

(2Δ − 1) O(log12 Δ)

O(Δ)



Open questions: lower bounds

• Can we prove a non-trivial lower bound for solving (2Δ - 1)-edge coloring?


‣ Can we show that it cannot be solved in o(log Δ) + O(log* n)?



Thank you!


