
Distributed Edge Coloring in
Time Polylogarithmic in Δ

Dennis Olivetti
Gran Sasso Science Institute, L'Aquila, Italy

Joint work with: Alkida Balliu, Sebastian Brandt, Fabian Kuhn

LOCAL model
• Undirected simple graph G = (V, E) of n

nodes and maximum degree Δ

• Each node has a unique ID

• Synchronous message passing model

• Unbounded computation

• Unbounded bandwidth

22

24

6

15

16

36

4

1

10

17

14

40

23

2

19

7

27

31

33

26

42

529

21

38

25

3

8
12

13

20

18

34

35

30

28 32

9 44
41

11

CONGEST model
• Undirected simple graph G = (V, E) of n

nodes and maximum degree Δ

• Each node has a unique ID

• Synchronous message passing model

• Unbounded computation

• O(log n)-bit messages

22

24

6

15

16

36

4

1

10

17

14

40

23

2

19

7

27

31

33

26

42

529

21

38

25

3

8
12

13

20

18

34

35

30

28 32

9 44
41

11

Four classical problems

Maximal
independent set

(Δ + 1)-vertex
coloring

(2Δ - 1)-edge
coloring

Maximal
matching

Four classical problems

Maximal
independent set

(Δ + 1)-vertex
coloring

(2Δ - 1)-edge
coloring

Maximal
matching

These problems can be solved in rounds [Rozhon, Ghaffari ’20]poly log n

Four classical problems

Maximal
independent set

(Δ + 1)-vertex
coloring

(2Δ - 1)-edge
coloring

Maximal
matching

These problems can be solved in rounds [Rozhon, Ghaffari ’20]poly log n

These problems require rounds [Linial ’87]Ω(log * n)

Four classical problems

Maximal
independent set

(Δ + 1)-vertex
coloring

(2Δ - 1)-edge
coloring

Maximal
matching

These problems can be solved in rounds [Rozhon, Ghaffari ’20]poly log n

These problems require rounds [Linial ’87]Ω(log * n)

Big question: f(Δ) + O(log* n)

Four classical problems

[Panconesi, Rizzi '01]
O(Δ + log* n)

[BBHORS '19]
Ω(min{Δ, logΔ n})Maximal Matching

Four classical problems

[Barenboim, Elkin, Kuhn '09]
O(Δ + log* n)

[BBHORS '19] [BBKO '22]
Ω(min{Δ, logΔ n})Maximal

Independent Set

[Panconesi, Rizzi '01]
O(Δ + log* n)

[BBHORS '19]
Ω(min{Δ, logΔ n})Maximal Matching

Four classical problems

[Barenboim, Elkin, Kuhn '09]
O(Δ + log* n)

[BBHORS '19] [BBKO '22]
Ω(min{Δ, logΔ n})Maximal

Independent Set

[Panconesi, Rizzi '01]
O(Δ + log* n)

[BBHORS '19]
Ω(min{Δ, logΔ n})Maximal Matching

[FHK '16] [BEG '18] [MT '20]
O(Δ log Δ + log* n)-Vertex

Coloring
(Δ + 1)

Four classical problems

[Barenboim, Elkin, Kuhn '09]
O(Δ + log* n)

[BBHORS '19] [BBKO '22]
Ω(min{Δ, logΔ n})Maximal

Independent Set

[Panconesi, Rizzi '01]
O(Δ + log* n)

[BBHORS '19]
Ω(min{Δ, logΔ n})Maximal Matching

[FHK '16] [BEG '18] [MT '20]
O(Δ log Δ + log* n)-Vertex

Coloring
(Δ + 1)

[Balliu, Kuhn, Olivetti '20]
(log Δ)O(log log Δ) + O(log* n)-Edge

Coloring
(2Δ − 1)

Four classical problems

[Barenboim, Elkin, Kuhn '09]
O(Δ + log* n)

[BBHORS '19] [BBKO '22]
Ω(min{Δ, logΔ n})Maximal

Independent Set

[Panconesi, Rizzi '01]
O(Δ + log* n)

[BBHORS '19]
Ω(min{Δ, logΔ n})Maximal Matching

[FHK '16] [BEG '18] [MT '20]
O(Δ log Δ + log* n)-Vertex

Coloring
(Δ + 1)

[Balliu, Kuhn, Olivetti '20]
(log Δ)O(log log Δ) + O(log* n)-Edge

Coloring
(2Δ − 1)!

(2 -1)-Edge ColoringΔ

Edge coloring: state of the art

Edge coloring: state of the art
• -edge coloring (achieved through -vertex coloring): (2Δ − 1) (Δ + 1)

Edge coloring: state of the art
• -edge coloring (achieved through -vertex coloring): (2Δ − 1) (Δ + 1)

• [Barenboim, Elkin ’09], [Kuhn ’09]O(Δ + log* n)

Edge coloring: state of the art
• -edge coloring (achieved through -vertex coloring): (2Δ − 1) (Δ + 1)

• [Barenboim, Elkin ’09], [Kuhn ’09]O(Δ + log* n)

• [Barenboim ’15]O(Δ3/4 + log* n)

Edge coloring: state of the art
• -edge coloring (achieved through -vertex coloring): (2Δ − 1) (Δ + 1)

• [Barenboim, Elkin ’09], [Kuhn ’09]O(Δ + log* n)

• [Barenboim ’15]O(Δ3/4 + log* n)

• [Fraigniaud, Heinrich, Kosowski ’16] [Barenboim, Elkin, Goldenberg ’18] [Maus,
Tonoyan ’20]
O(Δ log Δ + log* n)

Edge coloring: state of the art
• -edge coloring (achieved through -vertex coloring): (2Δ − 1) (Δ + 1)

• [Barenboim, Elkin ’09], [Kuhn ’09]O(Δ + log* n)

• [Barenboim ’15]O(Δ3/4 + log* n)

• [Fraigniaud, Heinrich, Kosowski ’16] [Barenboim, Elkin, Goldenberg ’18] [Maus,
Tonoyan ’20]
O(Δ log Δ + log* n)

• -edge coloring: [Barenboim, Elkin ’10]O(Δ) O(Δε + log* n)

Edge coloring: state of the art
• -edge coloring (achieved through -vertex coloring): (2Δ − 1) (Δ + 1)

• [Barenboim, Elkin ’09], [Kuhn ’09]O(Δ + log* n)

• [Barenboim ’15]O(Δ3/4 + log* n)

• [Fraigniaud, Heinrich, Kosowski ’16] [Barenboim, Elkin, Goldenberg ’18] [Maus,
Tonoyan ’20]
O(Δ log Δ + log* n)

• -edge coloring: [Barenboim, Elkin ’10]O(Δ) O(Δε + log* n)

• -edge coloring in [Kuhn ’20](2Δ − 1) 2O(log Δ) + O(log* n)

Edge coloring: state of the art
• -edge coloring (achieved through -vertex coloring): (2Δ − 1) (Δ + 1)

• [Barenboim, Elkin ’09], [Kuhn ’09]O(Δ + log* n)

• [Barenboim ’15]O(Δ3/4 + log* n)

• [Fraigniaud, Heinrich, Kosowski ’16] [Barenboim, Elkin, Goldenberg ’18] [Maus,
Tonoyan ’20]
O(Δ log Δ + log* n)

• -edge coloring: [Barenboim, Elkin ’10]O(Δ) O(Δε + log* n)

• -edge coloring in [Kuhn ’20](2Δ − 1) 2O(log Δ) + O(log* n)

• -edge coloring in [Balliu, Kuhn, Olivetti ’20](2Δ − 1) (log Δ)O(log log Δ) + O(log* n)

Edge coloring: state of the art
• -edge coloring (achieved through -vertex coloring): (2Δ − 1) (Δ + 1)

• [Barenboim, Elkin ’09], [Kuhn ’09]O(Δ + log* n)

• [Barenboim ’15]O(Δ3/4 + log* n)

• [Fraigniaud, Heinrich, Kosowski ’16] [Barenboim, Elkin, Goldenberg ’18] [Maus,
Tonoyan ’20]
O(Δ log Δ + log* n)

• -edge coloring: [Barenboim, Elkin ’10]O(Δ) O(Δε + log* n)

• -edge coloring in [Kuhn ’20](2Δ − 1) 2O(log Δ) + O(log* n)

• -edge coloring in [Balliu, Kuhn, Olivetti ’20](2Δ − 1) (log Δ)O(log log Δ) + O(log* n)

• Can we solve -edge coloring in rounds?(2Δ − 1) poly log Δ + O(log* n)

Our results

 O(poly log Δ + log* n)-Edge
Coloring

(2Δ − 1) LOCAL
model

 O(poly log Δ + log* n)-Edge
Coloring

O(Δ) CONGEST
model

Our results

 O(log7 C ⋅ log5 Δ + log* n)-List
Edge Coloring

(degree + 1) LOCAL
model

 O (log12 Δ
ε6

+ log* n)
-Edge

Coloring
(8 + ε)Δ CONGEST

model

 O(log12 Δ + log* n)-Edge
Coloring

(2Δ − 1) LOCAL
model

A possible approach
Try to recursively color the edges with 2
colors, such that each node has roughly
the same amount of incident edges for
each color

A possible approach
Try to recursively color the edges with 2
colors, such that each node has roughly
the same amount of incident edges for
each color

A possible approach
Try to recursively color the edges with 2
colors, such that each node has roughly
the same amount of incident edges for
each color

A possible approach

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

A possible approach

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

• After steps of recursion the maximum degree is T Δ ⋅ (1 + ε
2)

T

A possible approach

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

• After steps of recursion the maximum degree is T Δ ⋅ (1 + ε
2)

T

• Let us fix and T = log Δ ε = 1/log Δ

A possible approach

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

• After steps of recursion the maximum degree is T Δ ⋅ (1 + ε
2)

T

• Let us fix and T = log Δ ε = 1/log Δ
• After steps each subgraph has constant maximum degreeT

A possible approach

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

• After steps of recursion the maximum degree is T Δ ⋅ (1 + ε
2)

T

• Let us fix and T = log Δ ε = 1/log Δ
• After steps each subgraph has constant maximum degreeT
• The number of colors is 2T ⋅ O(1) = O(Δ)

A possible approach

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

• After steps of recursion the maximum degree is T Δ ⋅ (1 + ε
2)

T

• Let us fix and T = log Δ ε = 1/log Δ
• After steps each subgraph has constant maximum degreeT
• The number of colors is 2T ⋅ O(1) = O(Δ)
• Running time: log Δ ⋅ Tbalanced_2_col + Tfinal

A possible approach

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

• After steps of recursion the maximum degree is T Δ ⋅ (1 + ε
2)

T

• Let us fix and T = log Δ ε = 1/log Δ
• After steps each subgraph has constant maximum degreeT
• The number of colors is 2T ⋅ O(1) = O(Δ)
• Running time: log Δ ⋅ Tbalanced_2_col + Tfinal

A possible approach

Can be done in just O(log* n)

• Start from a graph of maximum degree Δ, 2-color the edges such that
the graph induced by each color has maximum degree roughly Δ/2,
Recurse on each subgraph.

• After steps of recursion the maximum degree is T Δ ⋅ (1 + ε
2)

T

• Let us fix and T = log Δ ε = 1/log Δ
• After steps each subgraph has constant maximum degreeT
• The number of colors is 2T ⋅ O(1) = O(Δ)
• Running time: log Δ ⋅ Tbalanced_2_col + Tfinal

A possible approach

Can be done in just O(log* n)This requires too much!

• 2-coloring the edges such that each node has at least one incident edge
for each color requires rounds, but our target runtime isΩ(log n)
O(poly log Δ + log* n)

A possible approach: the issue

Relaxing the problem: different splitting

• d-node-defective c-edge-coloring: color the edges with c colors such
that each node has at most d incident edges of the same color.

Relaxing the problem: different splitting

• d-node-defective c-edge-coloring: color the edges with c colors such
that each node has at most d incident edges of the same color.

Relaxing the problem: different splitting

• d-node-defective c-edge-coloring: color the edges with c colors such
that each node has at most d incident edges of the same color.

This is hard for and c = 2 d ≤ Δ − 1

Relaxing the problem: different splitting

• d-node-defective c-edge-coloring: color the edges with c colors such
that each node has at most d incident edges of the same color.

This is hard for and c = 2 d ≤ Δ − 1

Also, this seems to be useful only for d ≤ (1 + ε)Δ/c

Relaxing the problem: different splitting

• d-node-defective c-edge-coloring: color the edges with c colors such
that each node has at most d incident edges of the same color.

This is hard for and c = 2 d ≤ Δ − 1

Also, this seems to be useful only for d ≤ (1 + ε)Δ/c

Actually, this is hard for all parameters for which it is useful!

Relaxing the problem: different splitting

• d-node-defective c-edge-coloring: color the edges with c colors such
that each node has at most d incident edges of the same color.

This is hard for and c = 2 d ≤ Δ − 1

Also, this seems to be useful only for d ≤ (1 + ε)Δ/c

Actually, this is hard for all parameters for which it is useful!

• d-edge-defective c-edge-coloring: color the edges with c colors such
that each edge has at most d incident edges of the same color.

Relaxing the problem: different splitting

• d-node-defective c-edge-coloring: color the edges with c colors such
that each node has at most d incident edges of the same color.

This is hard for and c = 2 d ≤ Δ − 1

Also, this seems to be useful only for d ≤ (1 + ε)Δ/c

Actually, this is hard for all parameters for which it is useful!

• d-edge-defective c-edge-coloring: color the edges with c colors such
that each edge has at most d incident edges of the same color.

Relaxing the problem: different splitting

• d-node-defective c-edge-coloring: color the edges with c colors such
that each node has at most d incident edges of the same color.

This is hard for and c = 2 d ≤ Δ − 1

Also, this seems to be useful only for d ≤ (1 + ε)Δ/c

Actually, this is hard for all parameters for which it is useful!

• d-edge-defective c-edge-coloring: color the edges with c colors such
that each edge has at most d incident edges of the same color.

This is the problem that we tried to solve, for and c = 2
d ≤ (1 + ε)Δ

Relaxing the problem: different splitting

Edge Defective Edge Coloring

Edge Defective Edge Coloring

Edge Defective Edge Coloring

Edge Defective Edge Coloring

Edge Defective Edge Coloring

Edge Defective Edge Coloring

u v

• Orient the edges of a graph such that, for each edge oriented from to , it holds that (u, v) u v
degin(v) ≤ degin(u) + 1

Semi Matching

u v

• Orient the edges of a graph such that, for each edge oriented from to , it holds that (u, v) u v
degin(v) ≤ degin(u) + 1

• Color blue the edges incoming on black nodes, color red the edges incoming on white
nodes

Semi Matching

u vu v

• Orient the edges of a graph such that, for each edge oriented from to , it holds that (u, v) u v
degin(v) ≤ degin(u) + 1

• Color blue the edges incoming on black nodes, color red the edges incoming on white
nodes

Semi Matching

u vu v

• Orient the edges of a graph such that, for each edge oriented from to , it holds that (u, v) u v
degin(v) ≤ degin(u) + 1

• Color blue the edges incoming on black nodes, color red the edges incoming on white
nodes

• Defect: (degin(v) − 1) + (Δ − degin(u) − 1) ≤

Semi Matching

u vu v

• Orient the edges of a graph such that, for each edge oriented from to , it holds that (u, v) u v
degin(v) ≤ degin(u) + 1

• Color blue the edges incoming on black nodes, color red the edges incoming on white
nodes

• Defect: (degin(v) − 1) + (Δ − degin(u) − 1) ≤
(degin(u) + 1 − 1) + (Δ − degin(u) − 1) = Δ − 1

Semi Matching

• Orient the edges of a graph such that, for each edge oriented from
 to , it holds that

Efficient Load-Balancing through Distributed Token Dropping

[Brandt, Keller, Rybicki, Suomela, Uitto 2021]

This problem can be solved in rounds!

(u, v)
u v degin(v) ≤ degin(u) + 1

O(Δ4)

Semi Matching

• Semi-matching solves "balanced" edge 2-coloring, but:

Issues

• Semi-matching solves "balanced" edge 2-coloring, but:

• The running time is , we want O(Δ4) O(logc Δ)

Issues

• Semi-matching solves "balanced" edge 2-coloring, but:

• The running time is , we want O(Δ4) O(logc Δ)

• We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is
given, we do not have that

Issues

• Semi-matching solves "balanced" edge 2-coloring, but:

• The running time is , we want O(Δ4) O(logc Δ)

• We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is
given, we do not have that

• The conversion only works on regular graphs, we do not have that

Issues

• Semi-matching solves "balanced" edge 2-coloring, but:

• The running time is , we want O(Δ4) O(logc Δ)

• We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is
given, we do not have that

• The conversion only works on regular graphs, we do not have that

• The recursion schema solves -edge coloring, not -edge coloring.
For a better result, we need to solve a harder variant (list coloring)

O(Δ) (2Δ − 1)

Issues

• Semi-matching solves "balanced" edge 2-coloring, but:

• The running time is , we want O(Δ4) O(logc Δ)

• We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is
given, we do not have that

• The conversion only works on regular graphs, we do not have that

• The recursion schema solves -edge coloring, not -edge coloring.
For a better result, we need to solve a harder variant (list coloring)

O(Δ) (2Δ − 1)

Issues

This is easy to handle

• Semi-matching solves "balanced" edge 2-coloring, but:

• The running time is , we want O(Δ4) O(logc Δ)

• We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is
given, we do not have that

• The conversion only works on regular graphs, we do not have that

• The recursion schema solves -edge coloring, not -edge coloring.
For a better result, we need to solve a harder variant (list coloring)

O(Δ) (2Δ − 1)

Issues

This is easy to handle

This is very challenging

• Semi-matching solves "balanced" edge 2-coloring, but:

• The running time is , we want O(Δ4) O(logc Δ)

• We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is
given, we do not have that

• The conversion only works on regular graphs, we do not have that

• The recursion schema solves -edge coloring, not -edge coloring.
For a better result, we need to solve a harder variant (list coloring)

O(Δ) (2Δ − 1)

Issues

This is easy to handle

This is very challenging

This is not hard

• Semi-matching solves "balanced" edge 2-coloring, but:

• The running time is , we want O(Δ4) O(logc Δ)

• We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is
given, we do not have that

• The conversion only works on regular graphs, we do not have that

• The recursion schema solves -edge coloring, not -edge coloring.
For a better result, we need to solve a harder variant (list coloring)

O(Δ) (2Δ − 1)

Issues

This is easy to handle

This is very challenging

This is not hard

This is interesting

• Semi-matching solves "balanced" edge 2-coloring, but:

• The running time is , we want O(Δ4) O(logc Δ)

• We can turn a semi-matching into an edge 2-coloring only if a 2-vertex coloring is
given, we do not have that

• The conversion only works on regular graphs, we do not have that

• The recursion schema solves -edge coloring, not -edge coloring.
For a better result, we need to solve a harder variant (list coloring)

O(Δ) (2Δ − 1)

Issues

This is easy to handle

This is very challenging

This is not hard

This is interesting

Removing the 2-coloring requirement

• The -defective vertex 4-coloring problem can be solved in
 rounds [Barenboim, Elkin, Kuhn 2014]

(εΔ + ⌊Δ/2⌋)
O(log* n)

Removing the 2-coloring requirement

• The -defective vertex 4-coloring problem can be solved in
 rounds [Barenboim, Elkin, Kuhn 2014]

(εΔ + ⌊Δ/2⌋)
O(log* n)

• We can color the nodes of a graph with 4 colors, such that, for each node,
not much more than half of its neighbors have the same color

Removing the 2-coloring requirement

• The -defective vertex 4-coloring problem can be solved in
 rounds [Barenboim, Elkin, Kuhn 2014]

(εΔ + ⌊Δ/2⌋)
O(log* n)

• We can color the nodes of a graph with 4 colors, such that, for each node,
not much more than half of its neighbors have the same color

• Let's ignore monochromatic edges, we can recurse on them later

Removing the 2-coloring requirement

• The -defective vertex 4-coloring problem can be solved in
 rounds [Barenboim, Elkin, Kuhn 2014]

(εΔ + ⌊Δ/2⌋)
O(log* n)

• We can color the nodes of a graph with 4 colors, such that, for each node,
not much more than half of its neighbors have the same color

• Let's ignore monochromatic edges, we can recurse on them later

• We have a 4 coloring, we need a 2 coloring...

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

Removing the 2-coloring requirement

• Assume we have an -edge coloring algorithm for 2-vertex colored graphs.O(Δ)

Removing the 2-coloring requirement

• Assume we have an -edge coloring algorithm for 2-vertex colored graphs.O(Δ)

• We can use colors to partially edge-color the graph, such that the maximum vertex
degree roughly halves

cΔ

Removing the 2-coloring requirement

• Assume we have an -edge coloring algorithm for 2-vertex colored graphs.O(Δ)

• We can use colors to partially edge-color the graph, such that the maximum vertex
degree roughly halves

cΔ

• We can then use other colors to partially color the remaining edges, such that the
maximum vertex degree roughly halves again...

cΔ/2

Removing the 2-coloring requirement

• Assume we have an -edge coloring algorithm for 2-vertex colored graphs.O(Δ)

• We can use colors to partially edge-color the graph, such that the maximum vertex
degree roughly halves

cΔ

• We can then use other colors to partially color the remaining edges, such that the
maximum vertex degree roughly halves again...

cΔ/2

• Repeat... at step i, we use colors, and the maximum degree goes down by a factor 2cΔ/2i

Removing the 2-coloring requirement

• Assume we have an -edge coloring algorithm for 2-vertex colored graphs.O(Δ)

• We can use colors to partially edge-color the graph, such that the maximum vertex
degree roughly halves

cΔ

• We can then use other colors to partially color the remaining edges, such that the
maximum vertex degree roughly halves again...

cΔ/2

• Repeat... at step i, we use colors, and the maximum degree goes down by a factor 2cΔ/2i

• With colors we color all the edges2cΔ = O(Δ)

Removing the 2-coloring requirement

• Assume we have an -edge coloring algorithm for 2-vertex colored graphs.O(Δ)

• We can use colors to partially edge-color the graph, such that the maximum vertex
degree roughly halves

cΔ

• We can then use other colors to partially color the remaining edges, such that the
maximum vertex degree roughly halves again...

cΔ/2

• Repeat... at step i, we use colors, and the maximum degree goes down by a factor 2cΔ/2i

• With colors we color all the edges2cΔ = O(Δ)

Removing the 2-coloring requirement

Given a round algorithm for -edge coloring in bipartite 2-colored graphs,
we can construct an algorithm for -edge coloring in general graphs that runs

in rounds

T O(Δ)
O(Δ)

O(T log Δ + log* n)

• Semi-matching solves "balanced" edge 2-coloring, but:

• The running time is , we want

• We can turn a semi-matching into a edge 2-coloring only if a 2-vertex coloring is given,
we do not have that

• The conversion only works on regular graphs, we do not have that

• The recursion schema solves -edge coloring, not -edge coloring.
For a better result, we need to solve a harder variant (list coloring)

O(Δ4) O(logc Δ)

O(Δ) (2Δ − 1)

Issues

This is easy to handle

This is very challenging

This is not hard

This is interesting

• Semi-matching solves "balanced" edge 2-coloring, but:

• The running time is , we want

• We can turn a semi-matching into a edge 2-coloring only if a 2-vertex coloring is given,
we do not have that

• The conversion only works on regular graphs, we do not have that

• The recursion schema solves -edge coloring, not -edge coloring.
For a better result, we need to solve a harder variant (list coloring)

O(Δ4) O(logc Δ)

O(Δ) (2Δ − 1)

Issues

This is easy to handle

This is very challenging

This is not hard

This is interesting

Relaxed Semi Matching

• Orient the edges of a graph such that, for each edge oriented from to ,
it holds that

(u, v) u v
degin(v) ≤ degin(u) + 1

Relaxed Semi Matching

• Orient the edges of a graph such that, for each edge oriented from to ,
it holds that

(u, v) u v
degin(v) ≤ degin(u) + 1

• This allows us to reduce the maximum edge degree from to ,
i.e., the new edge degree is 1/2 the original edge degree. Unfortunately,
is too expensive.

(2Δ − 2) (Δ − 1)
O(Δ4)

Relaxed Semi Matching

• Orient the edges of a graph such that, for each edge oriented from to ,
it holds that

(u, v) u v
degin(v) ≤ degin(u) + 1

• This allows us to reduce the maximum edge degree from to ,
i.e., the new edge degree is 1/2 the original edge degree. Unfortunately,
is too expensive.

(2Δ − 2) (Δ − 1)
O(Δ4)

• How about ?
(1 + 1

log Δ)
2

Relaxed Semi Matching

• Orient the edges of a graph such that, for each edge oriented from to ,
it holds that

(u, v) u v
degin(v) ≤ degin(u) + 1

• This allows us to reduce the maximum edge degree from to ,
i.e., the new edge degree is 1/2 the original edge degree. Unfortunately,
is too expensive.

(2Δ − 2) (Δ − 1)
O(Δ4)

• How about ?
(1 + 1

log Δ)
2

• In order to achieve this, it turns out that it is enough to solve a more relaxed

variant of semi-matching, that satisfies degin(v) ≤ degin(u) +
Δ

log Δ

Relaxed Semi Matching

Relaxed Semi Matching

• Orient the edges of a graph such that, for each edge oriented
from to , it holds that

(u, v)
u v degin(v) ≤ degin(u) + k

Relaxed Semi Matching

• Orient the edges of a graph such that, for each edge oriented
from to , it holds that

(u, v)
u v degin(v) ≤ degin(u) + k

• This problem can be solved in rounds!O(Δ5/k5)

Relaxed Semi Matching

• Orient the edges of a graph such that, for each edge oriented
from to , it holds that

(u, v)
u v degin(v) ≤ degin(u) + k

• This problem can be solved in rounds!O(Δ5/k5)

• For , this gives an round algorithm!k =
Δ

log Δ
O(log5 Δ)

Relaxed Semi Matching

Fixing a solution

Fixing a solution

Fixing a solution

Fixing a solution

Token Dropping Game

Token Dropping Game

Token Dropping Game

Token Dropping Game

Token Dropping Game

Token Dropping Game

• We are given an directed acyclic graph

• Each node holds either 0 or 1 token

• Tokens can be moved from u to v if and only if:

• the edge {u, v} exists

• the edge {u, v} is oriented from v to u

• u is holding a token

• v is not holding a token

• Once a token passes through an edge, the edge disappears

• We want to reach a stable solution

Token Dropping Game

Token Dropping Game

Token Dropping Game

Token Dropping Game

Token Dropping Game

Efficient Load-Balancing through Distributed Token Dropping

[Brandt, Keller, Rybicki, Suomela, Uitto 2021]

The Token Dropping Game can be solved in rounds!O(L ⋅ Δ2)

Token Dropping Game

L

Efficient Load-Balancing through Distributed Token Dropping

[Brandt, Keller, Rybicki, Suomela, Uitto 2021]

The Token Dropping Game can be solved in rounds!

The Semi Matching problem can be solved by solving the Token
Dropping Game for times (and)

Semi Matching problem can be solved in rounds!

O(L ⋅ Δ2)

O(Δ) L = O(Δ)

O(Δ4)

Semi Matching

• We are given an directed acyclic graph

• Each node holds either 0 or 1 token

• A token can be moved from u to v if and only if:

• the edge {u, v} exists

• the edge {u, v} is oriented from v to u

• u is holding a token

• v is not holding a token

• Once a token passes through an edge, the edge disappears

• We want to reach a stable solution

Token Dropping Game

• We are given an directed acyclic graph

• Each node holds up to k tokens

• A token can be moved from u to v if and only if:

• the edge {u, v} exists

• the edge {u, v} is oriented from v to u

• u is holding at least one token

• v is holding at most k-1 tokens, a token must move if v is holding at most k/2 tokens

• Once a token passes through an edge, the edge disappears

• We want to reach a stable solution

Relaxed Token Dropping Game

Relaxed Token Dropping Game

• The Relaxed Token Dropping Game can be solved in
rounds!

O(L ⋅ Δ3/k3)

Relaxed Token Dropping Game

• The Relaxed Token Dropping Game can be solved in
rounds!

O(L ⋅ Δ3/k3)

• The Relaxed Semi Matching problem can be solved in rounds!O(Δ5/k5)

Relaxed Token Dropping Game

• The Relaxed Token Dropping Game can be solved in
rounds!

O(L ⋅ Δ3/k3)

• The Relaxed Semi Matching problem can be solved in rounds!O(Δ5/k5)

• For , this gives an round algorithm!k =
Δ

log Δ
O(log5 Δ)

Relaxed Token Dropping Game

• The Relaxed Token Dropping Game can be solved in
rounds!

O(L ⋅ Δ3/k3)

• The Relaxed Semi Matching problem can be solved in rounds!O(Δ5/k5)

• For , this gives an round algorithm!k =
Δ

log Δ
O(log5 Δ)

• With some overhead, we can solve -edge coloring!poly log Δ O(Δ)

Relaxed Token Dropping Game

• The Relaxed Token Dropping Game can be solved in
rounds!

O(L ⋅ Δ3/k3)

• The Relaxed Semi Matching problem can be solved in rounds!O(Δ5/k5)

• For , this gives an round algorithm!k =
Δ

log Δ
O(log5 Δ)

• With some overhead, we can solve -edge coloring!poly log Δ O(Δ)

• For -edge coloring, things are harder. E.g., the game is not even
on a DAG!

(2Δ − 1)

Relaxed Token Dropping Game

Open questions: upper bounds

• We can solve -edge coloring in + O(log* n)

‣ Can we improve the exponent? We know a faster algorithm, but only for
-edge coloring

• Can we solve vertex coloring in subpoly(Δ)?

(2Δ − 1) O(log12 Δ)

O(Δ)

Open questions: lower bounds

• Can we prove a non-trivial lower bound for solving (2Δ - 1)-edge coloring?

‣ Can we show that it cannot be solved in o(log Δ) + O(log* n)?

Thank you!

