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« O(A + log* n) [Barenboim, Elkin '09], [Kuhn '09]
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This requires too much! Can be done in just O(log™ n)



A possible approach: the 1ssue

» 2-coloring the edges such that each node has at least one incident edge
for each color requires (2(10g 77) rounds, but our target runtime is

O(poly log A + log™ n)
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* d-node-defective c-edge-coloring: color the edges with ¢ colors such
that each node has at most d incident edges of the same color.

Thisishardforc = 2andd < A — |

Also, this seems to be useful only ford < (1 + &)A/c

Actually, this is hard for all parameters for which it is useful!

» d-edge-defective c-edge-coloring: color the edges with ¢ colors such
that each edge has at most d incident edges of the same color.

This is the problem that we tried to solve, for ¢ = 2 and
d<(1+¢eA

Relaxing the problem: different splitting
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Semi1 Matching

 Orient the edges of a graph such that, for each edge (i, v) oriented from
utov,itholds thatdeg, (v) < deg, (1) + |

Efficient Load-Balancing through Distributed Token Dropping

|[Brandt, Keller, Rybicki, Suomela, Uitto 2021]

This problem can be solved in O(A%) rounds!
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» The (¢A + | A/2|)-defective vertex 4-coloring problem can be solved in
O(log™ n) rounds [Barenboim, Elkin, Kuhn 2014]

* We can color the nodes of a graph with 4 colors, such that, for each node,
not much more than half of its neighbors have the same color

* Let's ignore monochromatic edges, we can recurse on them later

* We have a 4 coloring, we need a 2 coloring...
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Removing the 2-coloring requirement

» Assume we have an (J( A )-edge coloring algorithm for 2-vertex colored graphs.

» We can use c/A colors to partially edge-color the graph, such that the maximum vertex
degree roughly halves

» We can then use c/A/” other colors to partially color the remaining edges, such that the
maximum vertex degree roughly halves again...

* Repeat... at step i, we use c/A /2" colors, and the maximum degree goes down by a factor 2

» With 2cA = O(A) colors we color all the edges

Given a / round algorithm for O(/A )-edge coloring in bipartite 2-colored graphs,
we can construct an algorithm for (J( A\ )-edge coloring in general graphs that runs
in O(7 log A + log™ n) rounds
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 Orient the edges of a graph such that, for each edge (i, v) oriented from u to v,
it holds that deg. (v) < deg, (1) + |

 This allows us to reduce the maximum edge degree from (2ZA — 2)to (A — 1),

i.e., the new edge degree is 1/2 the original edge degree. Unfortunately, O(A™)
IS t00 expensive.
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(1 u logA)

« How about ——mm —7?
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* |n order to achieve this, it turns out that it is enough to solve a more relaxed

variant of semi-matching, that satisfies deg. (v) < deg. (1) + oA
Og
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Relaxed Semi1 Matching

» Orient the edges of a graph such that, for each edge (1, ) oriented
from u to v, it holds that deg. (v) < deg. (1) + £

+ This problem can be solved in O(A”/k”) rounds!

A

, this gives an O(l()g5 A ) round algorithm!
log A

e Fork =




Fixing a solution

-




Fixing a solution

Y
@<




Fixing a solution




Fixing a solution




Token Dropping Game

Y
@<




Token Dropping Game




Token Dropping Game

S

. \ K\ .




Token Dropping Game

S

. \ x .




Token Dropping Game




Token Dropping Game




Token Dropping Game

* We are given an directed acyclic graph

 Each node holds either 0 or 1 token

* Tokens can be moved from u to v if and only if: @ Q

* the edge {u, v} exists

* the edge {u, v} is oriented from v to u

* uis holding a token Q

* vis not holding a token

* Once a token passes through an edge, the edge disappears

« We want to reach a stable solution
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Token Dropping Game

Efficient Load-Balancing through Distributed Token Dropping

|Brandt, Keller, Rybicki, Suomela, Uitto 2021]

The Token Dropping Game can be solved in O(/. - A”) rounds!
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Semi1 Matching

Efficient Load-Balancing through Distributed Token Dropping

|Brandt, Keller, Rybicki, Suomela, Uitto 2021]

The Token Dropping Game can be solved in O(/. - A”) rounds!

The Semi Matching problem can be solved by solving the Token
Dropping Game for O(A) times (and L. = O(A))

Semi Matching problem can be solved in O(A“) rounds!




Token Dropping Game

* We are given an directed acyclic graph

 Each node holds either 0 or 1 token

* A token can be moved from u to v if and only if: @ Q

* the edge {u, v} exists

* the edge {u, v} is oriented from v to u

* uis holding a token Q

* vis not holding a token

* Once a token passes through an edge, the edge disappears

« We want to reach a stable solution



Relaxed Token Dropping Game

* We are given an directed acyclic graph

» Each node holds up to k tokens

* A token can be moved from u to v if and only if: @ @
* the edge {u, v} exists '
* the edge {u, v} is oriented from v to u

* uis holding at least one token @ @

* v is holding at most k-1 tokens, a token must move if v is holding at most k/2 tokens

* Once a token passes through an edge, the edge disappears

« We want to reach a stable solution
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» With some poly log A overhead, we can solve (A )-edge coloring!



Relaxed Token Dropping Game

. The Relaxed Token Dropping Game can be solved in O(. - A”/k”)
rounds!

. The Relaxed Semi Matching problem can be solved in O(A”/k”) rounds!

A
log A

e Fork = , this gives an 0(10g5 A ) round algorithm!

» With some poly log A overhead, we can solve (A )-edge coloring!

* For (2ZA — 1)-edge coloring, things are harder. E.g., the game is not even
on a DAG!



Open questions: upper bounds

e We can solve (2ZA — 1)-edge coloring in O(log12 A) + O(log* n)

>~ Can we improve the exponent? We know a faster algorithm, but only for
O(A)-edge coloring

» Can we solve vertex coloring in subpoly(A)?



Open questions: lower bounds

» Can we prove a non-trivial lower bound for solving (2A - 1)-edge coloring?

> Can we show that it cannot be solved in o(log A) + O(log* n)?



Thank you!



