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Property testing

Given a property P

Given a graph G

Decide:
I Does G satisfy the property P?
I Is G far from satisfying the property P?

The input is huge:
I Only a small part of the input can be seen
I We want sublinear algorithms
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Example: 2 colorability

2 colorable Far from being 2 colorable Almost 2 colorable
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How to measure how far is a graph from satisfying a
property?

Let G = (V ,E ), n = |V |, m = |E |. Let ε be a small constant in (0, 1).
There exist two distinct models:

Dense model

A graph is ε-far from satisfying a property if at least εn2 edges should be
added or removed from G in order to make the property hold.

Sparse model

A graph is ε-far from satisfying a property if at least εm edges should be
added or removed from G in order to make the property hold.
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Complexity

The complexity is measured in number of queries

Different type of queries are allowed:
I Give me the id of a random node and its degree
I Give me the i-th neighbor of node x
I Are nodes x and y neighbors?
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Definition

Property Tester (1 sided error)

A tester for a graph property P is a randomized algorithm A that is
required to accept or reject any given network instance, under the
following two constraints:

G satisfies P ⇒ A accepts G

G is ε-far from satisfying P ⇒ Pr [A rejects G ] ≥ 2
3
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Subgraph freeness

We want to know if G does not contain any copy of a subgraph H, or if it
contains many copies of H, being H some small graph (e.g. K5).

Easy in the dense model (using the Graph Removal Lemma)

Lemma

H freeness can be tested in constant time, for any H of constant size.

Hard in the sparse model

Lemma [Alon, Kaufman, Krivelevich, Ron ’08]

Testing triangle freeness requires Ω(n
1
3 ) queries.
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Distributed property testing

Definition

A distributed tester for a graph property P is a distributed randomized
algorithm A that satisfies the following conditions:

G satisfies P ⇒ every node outputs “accept”

G is ε-far from satisfying P ⇒
Pr[at least one node outputs “reject”] ≥ 2

3
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The Congest Model

All nodes start the computation at the same round

The computation proceeds in phases

At each phase each node:
I sends (possibly different) messages to its neighbors
I receives messages sent by its neighbors
I performs some local computation

The main constraint of the Congest model is that the exchanged messages
should be small, typically O(log n).
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Knowing the 2-hop neighborhood is hard
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State of the art

Lemma [Censor-Hillel, Fischer, Schwartzman, Vasudev ’16]

Any ε-tester for the dense model (for a non-disjointed property) that
makes q queries can be converted to a distributed ε-tester that requires
O(q2) rounds in the distributed setting.

[Censor-Hillel, Fischer, Schwartzman, Vasudev ’16]

Triangle freeness can be tested in O(1/ε2)

Cycle freeness can be tested O(log n/ε)

Cycle freeness requires at least Ω(log n)

Bipartiteness can be tested in in O(poly(log n
ε /ε)) in bounded degree

graphs

[Fraigniaud, Rapaport, Salo, Todinca ’16]

H-freeness can be tested in constant time for any H s.t. |V (H)| ≤ 4
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Results

Theorem

There exists an ε-tester for Ck freeness, for any constant k ≥ 3, that
requires O(1ε ) rounds in the CONGEST model.

Procedure:

Choose an edge u.a.r.

Check if there is a cycle of length k passing through that edge
I It can be done deterministically
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Choose an edge at random

Lemma [Fraigniaud, Rapaport, Salo, Todinca ’16]

Let H be any graph. Let G be an m-edge graph that is ε-far from being
H-free. Then G contains at least εm/|E (H)| edge-disjoint copies of H.

This implies that by choosing a random edge we have probability Ω(ε) to
choose an edge that is part of some copy of H.
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Choose an edge at random
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Choose an edge at random
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Choose an edge at random
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Choose an edge at random
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Check the presence of a cycle

Append and forward:

Nodes at distance 2 could potentially receive Θ(n) messages

Not feasible in the CONGEST model
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C7 detection

The partial solution can be sparsified

For C7, 3 subpaths (for each inital node) are enough
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Sparsification of the intermediate solution

Lemma [Erdős, Hajnal, Moon ’64]

Let V be a set of size n, and consider two integer parameters p and q. For
any set F ⊆ P(V ) of subsets of size at most p of V , there exists a
compact (p, q)-representation of F , i.e., a subset F̂ of F satisfying:

1 For each set C ⊆ V of size at most q, if there is a set L ∈ F such
that L ∩ C = ∅, then there also exists L̂ ∈ F̂ such that L̂ ∩ C = ∅;

2 The cardinality of F̂ is at most
(p+q

p

)
, for any n ≥ p + q .

In other words, the number of subpaths that must be forwarded at each
round do not depend on the size of the graph.
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Sparsification of the intermediate solution
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Node 2 should send at least one sequence that does not contain
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A constant number of sequences are enough
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Tree + 1 edge

T e

C3 CkK4

K2,k

[Fraigniaud, Montealegre, Olivetti, Rapaport, Todinca ’17]

There exists an ε-tester for H freeness, for any graph H of constant size
composed by a tree, an edge, and arbitrary connections between the
endpoints of the edge and the nodes of the tree, that requires O(1ε )
rounds in the CONGEST model.
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Open problems

Does there exist an ε-tester for K5-freeness?
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Thank you
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