Distributed Detection of Cycles

Pierre Fraigniaud, Dennis Olivetti

GSSI, L'Aquila and IRIF, Paris

くほと くほと くほと

Outline

- Property Testing
- Distributed Property Testing
- Testing of C_k freeness

3

くほと くほと くほと

Property testing

- Given a property P
- Given a graph G
- Decide:
 - Does G satisfy the property P?
 - Is G far from satisfying the property P?
- The input is huge:
 - Only a small part of the input can be seen
 - We want sublinear algorithms

Example: 2 colorability

2 colorable

Far from being 2 colorable

Almost 2 colorable

• • = • • = •

How to measure how far is a graph from satisfying a property?

Let G = (V, E), n = |V|, m = |E|. Let ϵ be a small constant in (0, 1). There exist two distinct models:

- 4 伺 ト 4 ヨ ト 4 ヨ ト

How to measure how far is a graph from satisfying a property?

Let G = (V, E), n = |V|, m = |E|. Let ϵ be a small constant in (0, 1). There exist two distinct models:

Dense model

A graph is ϵ -far from satisfying a property if at least ϵn^2 edges should be added or removed from G in order to make the property hold.

How to measure how far is a graph from satisfying a property?

Let G = (V, E), n = |V|, m = |E|. Let ϵ be a small constant in (0, 1). There exist two distinct models:

Dense model

A graph is ϵ -far from satisfying a property if at least ϵn^2 edges should be added or removed from G in order to make the property hold.

Sparse model

A graph is ϵ -far from satisfying a property if at least ϵm edges should be added or removed from G in order to make the property hold.

Complexity

- The complexity is measured in number of queries
- Different type of queries are allowed:
 - Give me the id of a random node and its degree
 - Give me the *i*-th neighbor of node x
 - Are nodes x and y neighbors?

3 K K 3 K

Definition

Property Tester (1 sided error)

A tester for a graph property P is a randomized algorithm A that is required to accept or reject any given network instance, under the following two constraints:

- G satisfies $P \Rightarrow A$ accepts G
- G is ϵ -far from satisfying $P \Rightarrow Pr[A \text{ rejects } G] \geq \frac{2}{3}$

Subgraph freeness

We want to know if G does not contain any copy of a subgraph H, or if it contains many copies of H, being H some small graph (e.g. K_5).

• Easy in the dense model (using the Graph Removal Lemma)

Lemma

H freeness can be tested in constant time, for any H of constant size.

• Hard in the sparse model

Lemma [Alon, Kaufman, Krivelevich, Ron '08]

Testing triangle freeness requires $\Omega(n^{\frac{1}{3}})$ queries.

Distributed property testing

Definition

A distributed tester for a graph property P is a distributed randomized algorithm A that satisfies the following conditions:

- G satisfies $P \Rightarrow$ every node outputs "accept"
- *G* is ϵ -far from satisfying $P \Rightarrow$ Pr[at least one node outputs "reject"] $\geq \frac{2}{3}$

The Congest Model

- All nodes start the computation at the same round
- The computation proceeds in phases
- At each phase each node:
 - sends (possibly different) messages to its neighbors
 - receives messages sent by its neighbors
 - performs some local computation

The main constraint of the Congest model is that the exchanged messages should be small, typically $O(\log n)$.

Knowing the 2-hop neighborhood is hard

くほと くほと くほと

State of the art

Lemma [Censor-Hillel, Fischer, Schwartzman, Vasudev '16]

Any ϵ -tester for the dense model (for a non-disjointed property) that makes q queries can be converted to a distributed ϵ -tester that requires $O(q^2)$ rounds in the distributed setting.

State of the art

Lemma [Censor-Hillel, Fischer, Schwartzman, Vasudev '16]

Any ϵ -tester for the dense model (for a non-disjointed property) that makes q queries can be converted to a distributed ϵ -tester that requires $O(q^2)$ rounds in the distributed setting.

[Censor-Hillel, Fischer, Schwartzman, Vasudev '16]

- Triangle freeness can be tested in $O(1/\epsilon^2)$
- Cycle freeness can be tested $O(\log n/\epsilon)$
- Cycle freeness requires at least $\Omega(\log n)$
- Bipartiteness can be tested in in $O(poly(\log \frac{n}{\epsilon}/\epsilon))$ in bounded degree graphs

State of the art

Lemma [Censor-Hillel, Fischer, Schwartzman, Vasudev '16]

Any ϵ -tester for the dense model (for a non-disjointed property) that makes q queries can be converted to a distributed ϵ -tester that requires $O(q^2)$ rounds in the distributed setting.

[Censor-Hillel, Fischer, Schwartzman, Vasudev '16]

- Triangle freeness can be tested in $O(1/\epsilon^2)$
- Cycle freeness can be tested $O(\log n/\epsilon)$
- Cycle freeness requires at least $\Omega(\log n)$
- Bipartiteness can be tested in in $O(poly(\log \frac{n}{\epsilon}/\epsilon))$ in bounded degree graphs

[Fraigniaud, Rapaport, Salo, Todinca '16]

• *H*-freeness can be tested in constant time for any *H* s.t. $|V(H)| \le 4$

Results

Theorem

There exists an ϵ -tester for C_k freeness, for any constant $k \ge 3$, that requires $O(\frac{1}{\epsilon})$ rounds in the CONGEST model.

· · · · · · · · ·

Results

Theorem

There exists an ϵ -tester for C_k freeness, for any constant $k \ge 3$, that requires $O(\frac{1}{\epsilon})$ rounds in the CONGEST model.

Procedure:

- Choose an edge u.a.r.
- Check if there is a cycle of length k passing through that edge
 - It can be done deterministically

Lemma [Fraigniaud, Rapaport, Salo, Todinca '16]

Let *H* be any graph. Let *G* be an *m*-edge graph that is ϵ -far from being *H*-free. Then *G* contains at least $\epsilon m/|E(H)|$ edge-disjoint copies of *H*.

This implies that by choosing a random edge we have probability $\Omega(\epsilon)$ to choose an edge that is part of some copy of H.

э

э

æ

æ

- 4 同 6 4 日 6 4 日 6

э

< 回 ト < 三 ト < 三 ト

Check the presence of a cycle

Append and forward:

- Nodes at distance 2 could potentially receive $\Theta(n)$ messages
- Not feasible in the CONGEST model

< 回 ト < 三 ト < 三 ト

C_7 detection

- The partial solution can be sparsified
- For C_7 , 3 subpaths (for each initial node) are enough

- - E + - E +

Sparsification of the intermediate solution

Lemma [Erdős, Hajnal, Moon '64]

Let V be a set of size n, and consider two integer parameters p and q. For any set $F \subseteq \mathcal{P}(V)$ of subsets of size at most p of V, there exists a compact (p,q)-representation of F, i.e., a subset \hat{F} of F satisfying:

• For each set $C \subseteq V$ of size at most q, if there is a set $L \in F$ such that $L \cap C = \emptyset$, then there also exists $\hat{L} \in \hat{F}$ such that $\hat{L} \cap C = \emptyset$;

② The cardinality of
$$\hat{F}$$
 is at most ${p+q \choose p}$, for any $n \geq p+q$.

In other words, the number of subpaths that must be forwarded at each round do not depend on the size of the graph.

Sparsification of the intermediate solution

- Node 2 should send at least one sequence that does not contain x1, x2 and x3
- A constant number of sequences are enough

Tree + 1 edge

[Fraigniaud, Montealegre, Olivetti, Rapaport, Todinca '17]

There exists an ϵ -tester for H freeness, for any graph H of constant size composed by a tree, an edge, and arbitrary connections between the endpoints of the edge and the nodes of the tree, that requires $O(\frac{1}{\epsilon})$ rounds in the CONGEST model.

Open problems

Does there exist an ϵ -tester for K_5 -freeness?

э

Thank you

æ

<ロ> (日) (日) (日) (日) (日)