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General topic

Given a graph problem, can we decide its distributed time complexity? 



LOCAL model
• Entities = nodes 
• Communication links = edges 
• Input graph = communication graph



LOCAL model
• Each node has a unique identifier from 1 to poly(n) 
• No bounds on the computational power of the entities 
• No bounds on the bandwidth
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LOCAL model
• Round 0
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LOCAL model
• Round 2
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LOCAL model
• After t rounds: knowledge of the graph up to distance t 
• Focus on locality
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Locally Checkable Labelings (LCLs)
• Input 

• Graph of constant maximum degree Δ  

• Node labels from a constant-size set X

[Naor and Stockmeyer, 1995]
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Locally Checkable Labelings (LCLs)
• Input 

• Graph of constant maximum degree Δ  

• Node labels from a constant-size set X

• Output 

• Node labels from a constant-size set Y, such that each node satisfies 
some local constraints

• Correctness 

• A solution is globally correct if it is correct in all constant-radius 
neighborhoods

[Naor and Stockmeyer, 1995]



Example: weak 2-coloring
• Output: color nodes from a palette of 2 colors  

• Constraint: each node must have a different color from at least 1 neighbor



Objective of this work

Given an LCL Π = (input, output, constraints) we want to: 

• Decide the distributed complexity of Π 

• Synthesize an asymptotically optimal algorithm for Π



State of the art



State of the art
• Paths/Cycles with NO input: 

• the time complexity is always decidable, and 

• it can be either O(1), Θ(log* n), or Θ(n)  

[Naor and Stockmeyer 1995] [Chang et al. 2016] [Brandt et al. 2017]



State of the art
• Paths/Cycles with NO input: 

• the time complexity is always decidable, and 

• it can be either O(1), Θ(log* n), or Θ(n)  

[Naor and Stockmeyer 1995] [Chang et al. 2016] [Brandt et al. 2017]

• √n ⨉ √n Grids: 

• the time complexity is undecidable, but 

• if the grid has no input, it can be either O(1), Θ(log* n), or Θ(√n)  

• if the grid has no input and is toroidal, it is decidable if there is a O(1) algorithm 

[Naor and Stockmeyer 1995] [Brandt et al. 2017]



State of the art
• Paths/Cycles with NO input: 

• the time complexity is always decidable, and 

• it can be either O(1), Θ(log* n), or Θ(n)  

[Naor and Stockmeyer 1995] [Chang et al. 2016] [Brandt et al. 2017]

• √n ⨉ √n Grids: 

• the time complexity is undecidable, but 

• if the grid has no input, it can be either O(1), Θ(log* n), or Θ(√n)  

• if the grid has no input and is toroidal, it is decidable if there is a O(1) algorithm 

[Naor and Stockmeyer 1995] [Brandt et al. 2017]

• Trees:  

• it is decidable if the LCL requires O(log n) or nΩ(1) 

[Chang and Pettie 2017]
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Unlabeled Directed Cycles

0 0

0 11 0

Independent Set

Self loop: O(1)

0 0

0 11 0

Maximal Independent Set

Flexible state: Θ(log* n)
"1 0" is flexible: 

∀ k ≥ 3, ∃ cycle of length k 
that starts and ends at "1 0"

0 11 0

Otherwise: Ω(n)

2-Coloring

[Brandt et al. 2017]
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Grids
• Define an LCL that requires to output the execution of a Turing machine 

• If the machine terminates, the LCL can be solved in O(1) 

• If the machine does not terminate, the LCL requires Ω(√n)

[Naor and Stockmeyer 1995]
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General Picture

• Grids allow to propagate too much information

• On trees/bounded treewidth graphs it should not be possible

• Let us prove that the complexity of LCLs is decidable on trees!

‣ It seems too hard, let us try with trees with NO input

‣ The tree structure can be used to encode inputs!

‣ Let us just try to understand inputs, on cycles



Results

Given an LCL Π on cycles/paths with input, it is possible to decide its 
distributed time complexity, and synthesize an asymptotically optimal 

algorithm for Π 

Π
Input = {0,1}

Output = {0,1,2}

Constraints = {…}

Complexity of Π 

Algorithm for Π



Results

It is PSPACE-hard to distinguish whether an LCL Π on cycles/paths with input 
labels can be solved in O(1) time or it needs Ω(n) time 

Π
Input = {0,1}

Output = {0,1,2}

Constraints = {…}

Complexity of Π 

Algorithm for Π

PSPACE hard
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Hardness

Input:
Locally 

checkable 
proof

+1 1 11 11̣ ⚡

Output:
̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣ E E E E E E

Copy the 
special 
symbol

OR
Prove that there is an 
error in the locally 
checkable proof



The obtained LCL has binary input and it is radius 1 checkable

Hardness

Input:
Locally 

checkable 
proof

+1 1 11 11̣ ⚡

Output:
̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣̣ E E E E E E

Copy the 
special 
symbol

OR
Prove that there is an 
error in the locally 
checkable proof
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Conclusions

• We can automatically obtain the complexity of any LCL on paths with input

• We can automatically obtain an optimal algorithm

• What about trees? 

• Can we decide if an LCL is O(log* n) or Ω(log n)?

• What about regular balanced trees with no input?

Thank you!


