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LOCAL Model

Machine

Communication
Link

Distributed network

Nodes represent machines

Edges represent communication links

Synchronous

Messages of arbitrary size, arbitrary
computational power

Nodes have distinct IDs

Nodes know the size of the graph

Complexity measure: number of
rounds required to solve a task
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LOCAL Model: easier description

A t-round algorithm for the LOCAL model is a mapping from t-radius balls
to valid outputs.
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Locally Checkable Labellings

LCL Problems:

Introduced by Naor and Stockmeyer in 1995

Constant-size input labels

Constant-size output labels

The maximum degree is constant

Validity of the output is locally checkable
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Locally Checkable Labellings (Example)

∆ + 1 vertex colouring:

The input is empty

The output is in
{1, . . . ,∆ + 1}
Nodes can check in 1 round
if the colouring is valid
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Local checkability

There must be a constant time distributed algorithm that is able to check
the solution, such that:

If the output is globally
correct, all nodes accept.

If there is an error, at least a
node rejects.
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Locally Checkable Labellings (Motivation)

Study the complexity of problems where the solution can be checked
e�iciently (like NP!)

By restricting to constant degree graphs, we study problems related to
distance, while ignoring the influence of other factors.

It is a simple class that contains many well known problems.

Lower bounds in this model apply to less powerful models.
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�estion

What are the possible time complexities
for LCL problems?
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LCL on Cycles and Paths

There are only three possible time complexities:
I Θ(1): trivial problems
I Θ(log∗ n): local problems (symmetry breaking)
I Θ(n): global problems

Automatic speedups:
I Any o(log∗ n)-rounds algorithm can be converted to a O(1)-rounds

algorithm [Naor and Stockmeyer, 1995]
I Any o(n)-rounds algorithm can be converted to a O(log∗ n)-rounds

algorithm [Chang, Kopelowitz and Pe�ie, 2016]

On cycles with no input, given an LCL description, we can decide its
time complexity. [Naor and Stockmeyer, 1995] [Brandt et al, 2017]

1 log∗n n
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Motivating Example (Grids)

∆–colouring in general graphs can be done in O(polylog n) rounds
[Panconesi, Srinivasan 1995]

4–colouring in 2–dimensional balanced grids can be done in
O(polylog n) rounds

1 polylog n
√
n

[Brandt et al. 2017]
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LCL on Trees

[Chang and Pe�ie, 2017]:

Any no(1)-rounds algorithm can be converted to a O(log n)-rounds
algorithm

There are problems of complexity Θ(n1/k)

1 log∗n nloglog∗n logn

? ? ? ?

n1/2n1/3no(1) . . . n1/4

??
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LCL on General Graphs

There are problems with complexity Θ(log n) [Brandt et al, 2016]
[Chang, Kopelowitz and Pe�ie, 2016] [Gha�ari and Su, 2017]

Any o(log log∗ n)-rounds algorithm can be converted to a O(1)-rounds
algorithm using the same techniques of [Naor and Stockmeyer, 1995]

Any o(log n)-rounds algorithm can be converted to a O(log∗ n)-rounds
algorithm [Chang, Kopelowitz and Pe�ie, 2016]

There are problems with complexities in (almost) all the other regions
[Balliu, Hirvonen, Korhonen, Lempiäinen, O., Suomela, 2018]

Many problems require Ω(log n) and O(poly log n)

Di�erent scenario with randomized algorithms

1 log∗n nloglog∗n logn

?

n1/2n1/3no(1) . . . n1/4
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Trees vs General Graphs

Trees
1 log∗n nloglog∗n logn

? ? ? ?

n1/2n1/3no(1) . . . n1/4

??

General Graphs
1 log∗n nloglog∗n logn

?

n1/2n1/3no(1) . . . n1/4

In general graphs, we can construct LCL problems with infinitely many
complexities between ω(

√
n) and o(n).

In trees, problems with complexities between ω(
√
n) and o(n) do not exist.
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Proof idea

In general graphs, we can construct LCL problems with infinitely many
complexities between ω(

√
n) and o(n)

Idea:

Encode linear bounded automata as LCLs on grids

Obtain complexities that depend on the execution time of the LBA
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Conclusions and Open Problems

Trees
1 log∗n nloglog∗n logn

? ? ?

n1/2n1/3no(1) . . . n1/4

??

General Graphs
1 log∗n nloglog∗n logn n1/2n1/3no(1) . . . n1/4

What changes in the case of randomization?

What happens if nodes do not know the size of the graph?

Can we prove automatic speedups for some subclass of LCL problems?
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Thank you!

�estions?
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