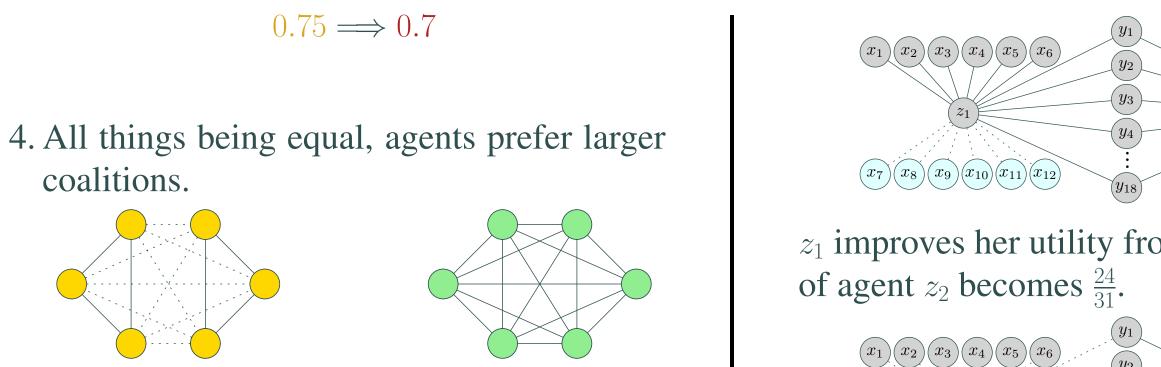
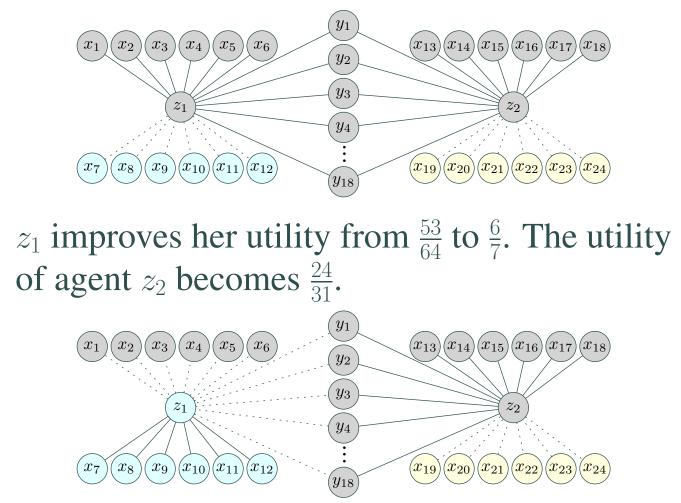
Nash Stability in Social Distance Games

Alkida Balliu, Michele Flammini, Giovanna Melideo, and Dennis Olivetti Gran Sasso Science Institute, Italy University of L'Aquila, Italy

Goal and Motivation

- The aim of this work is to improve our understanding of social networks from the viewpoint of non-cooperative game theory.
- Social Distance Games: a model of interaction on social networks capturing the idea that social networks exhibit homophily





• If there is not an exact cover for the input instance of *RXC*3, then every Nash equilibrium in the reduced instance of SDGs s.t.

 $SW < \frac{21}{4}p + \frac{19}{5}(m-p).$

Nash Equilibria: PoA

- (agents prefer to maintain ties with agents who are close to them.).
- Study the Nash equilibria in this context, focusing on the Price of Anarchy (PoA), Price of Stability (PoS) and the convergence into a Nash stable solution.

Model: Social Distance Games (SDGs)

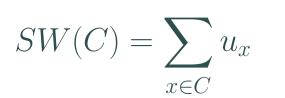
- A SDG [Brânzei and Larson 2011] is represented as an undirected graph G = (V, E)
- V is the set of agents and E is the set of links between agent.
- The *utility* of an agent $x \in V$ in a given coalition C is a suitable function of her harmonic-centrality in the subgraph induced by C, that is:

 $u_x(C) = \frac{1}{|C|} \sum_{y \in C \setminus \{x\}} \frac{1}{d_C(x, y)}.$

Example

$0.\overline{6} \Longrightarrow 0.8\overline{3}$

• Social Welfare (SW)



• Price of Anarchy (PoA) Worst-case ratio

> SW of a best clustering SW of a Nash stable clustering

• Price of Stability (PoS) Best-case ratio

 $\frac{SW \ of \ a \ best \ clustering}{SW \ of \ a \ Nash \ stable \ clustering}$

Nash Equilibria: convergence

 $z_{2} \text{ improves her utility from } \frac{24}{31} \text{ to } \frac{6}{7}.$ $x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} y_{1} y_{2} x_{13} x_{14} x_{15} x_{16} x_{17} x_{18} y_{2} x_{13} x_{14} x_{15} x_{16} x_{17} x_{18} y_{3} x_{14} x_{15} x_{16} x_{17} x_{18} x_{18} x_{18} x_{18} x_{19} x_{10} x_{11} x_{12} x_{18} x_{18} x_{19} x_{19} x_{10} x_{11} x_{12} x_{18} x_{18}$

 $x_1 \dots x_6$ and $x_{13} \dots x_{18}$ increase their utilities obtaining the initial coalitions.

ComputingaBestNashEquilibriumforSDGsisNP-hard

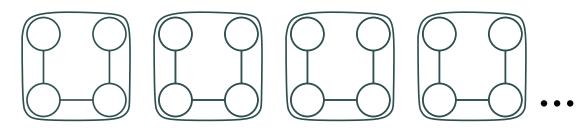
Reduction

- We provide a polynomial time reduction from the NP-Complete RESTRICTED EX-ACT COVER *by 3*-SETS (*RXC3*) problem.
- Given a generic instance (U, B) of RXC3, with |U| = 3p and |B| = m, we build an instance of SDGs by specifying the underlying undirected graph G = (V, E) as follows:
 for each triple B_i ∈ B, for i ∈ [m], we associate a set of 5 nodes X_i = {a_i, b_i, c_i, d_i, e_i}.
 for each element u_j ∈ U, for j ∈ [3p], we consider a node y_j and a set of 3 edges E_j = {(y_j, e_i)|u_j ∈ B_i}.
 Therefore, |V| = 3p + 5m and E = 9(p + m). Clearly such a reduction can be done in polynomial time.

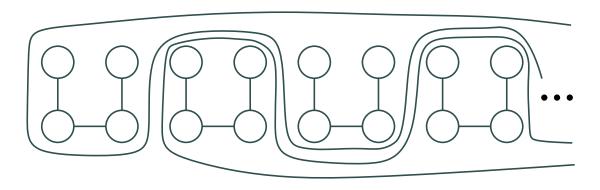
PoA in SDGs is $\Theta(n)$.

- PoA in SDGs is O(n):
- the SW is upper bounded by n 1 (grand coalition on complete graphs);
- in any coalition, the utility of each node is at least $\frac{1}{n}$.
- An SDG with *n* agents having $PoA = \Omega(n)$.

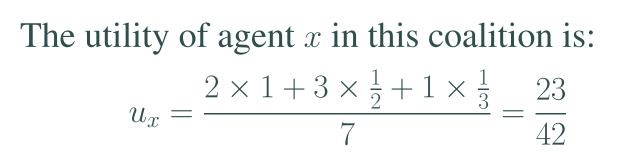
- A Nash stable solution with $SW = \frac{13n}{24}$.



- A Nash stable solution with $SW = \frac{13}{3}$.

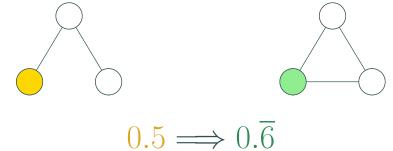


Nash Equilibria: PoS

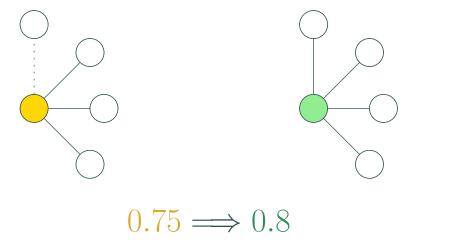


Properties of SDGs

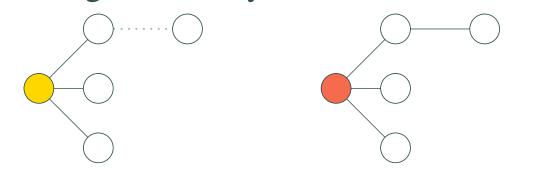
1. An agent prefers direct connections over indirect ones.



2. Adding a close connection positively affects an agent's utility.



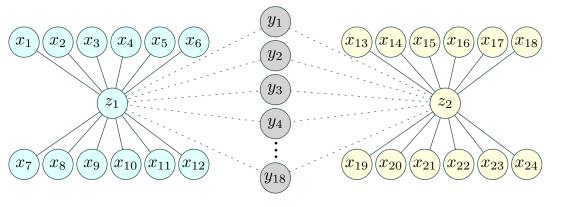
3. Adding a distant connection negatively affects an agent's utility.



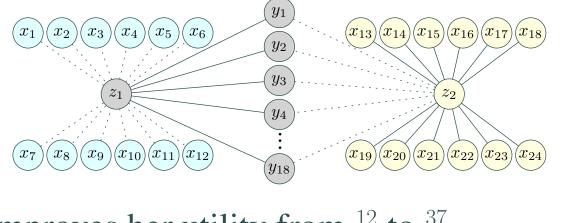
0

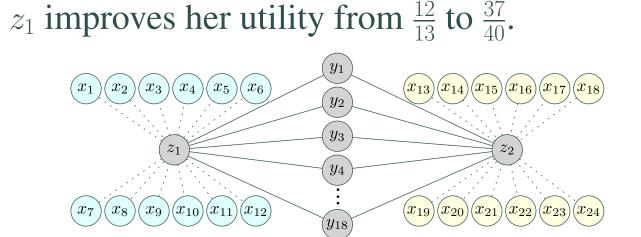
• SDGs always admit a Nash equilibrium: the grand coalition is Nash stable as no agent can have any improving deviation.

• SDGs may not converge to Nash equilibria. The starting coalitions.



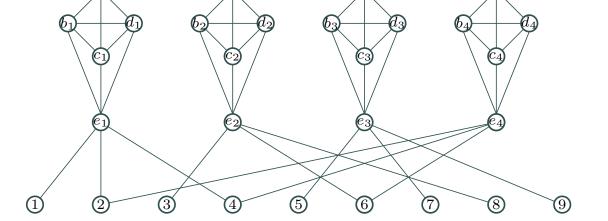
 z_1 improves her utility from $\frac{12}{13}$ to $\frac{18}{19}$.





 $\{x_1 \dots x_6\}$ and $\{x_{13} \dots x_{18}\}$ have utility 0, so they increase their utility doing the following deviations one after the other, taking the utility of agent z_1 to $\frac{53}{64}$. Example of the Reduction
𝔅 = {{1, 2, 4}, {3, 6, 8}, {5, 7, 9}, {2, 4, 6}}.
𝔅 U = [1, 9].

• The instance of SDGs:

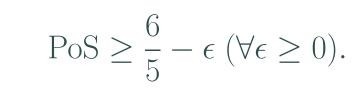


Reduction Result

• If there is an exact cover for the input instance of *RXC*3, then there exists a Nash equilibrium in the reduced instance of SDGs s.t.

$SW \ge \frac{21}{4}p + \frac{19}{5}(m-p).$

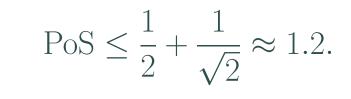
• The PoS of SDGs is at least



• The PoS of SDGs in which the underlying graph has girth = 4 is at least

$$PoS \ge \frac{169}{160} = 1.05625$$

• The upper bound of the PoS of SDGs in which the underlying graph has *girth* > 4 (i.e., there are no two agents that have more than one friend in common) is



Open Problems

- Upper bound of the PoS for general graphs.
- Is there a polynomial time algorithm for determining the existence of a Nash stable clustering for SDGs different from the grand coalition?
- Generalize our results to weighted graphs.